Richard W Padgett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5143483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic interactions between the DBL-1/BMP-like pathway and <i>dpy</i> body size–associated genes in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2019, 30, 3151-3160.	0.9	16
2	Human Marfan and Marfan-like Syndrome associated mutations lead to altered trafficking of the Type II TGFβ receptor in Caenorhabditis elegans. PLoS ONE, 2019, 14, e0216628.	1.1	4
3	Mutagenesis and Imaging Studies of BMP Signaling Mechanisms in C. elegans. Methods in Molecular Biology, 2019, 1891, 51-73.	0.4	7
4	bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway. Fly, 2018, 12, 105-117.	0.9	8
5	The TGF-β Family in <i>Caenorhabditis elegans</i> . Cold Spring Harbor Perspectives in Biology, 2017, 9, a022178.	2.3	77
6	Efficient Screening of CRISPR/Cas9-Induced Events in <i>Drosophila</i> Using a Co-CRISPR Strategy. G3: Genes, Genomes, Genetics, 2017, 7, 87-93.	0.8	58
7	C. elegans SMA-10 regulates BMP receptor trafficking. PLoS ONE, 2017, 12, e0180681.	1.1	10
8	Matters of context guide future research in TGFÎ ² superfamily signaling. Science Signaling, 2015, 8, re10.	1.6	44
9	BMP signaling requires retromer-dependent recycling of the type I receptor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2578-2583.	3.3	69
10	bantam Is Required for Optic Lobe Development and Glial Cell Proliferation. PLoS ONE, 2012, 7, e32910.	1.1	26
11	Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC Developmental Biology, 2010, 10, 61.	2.1	66
12	Caenorhabditis elegans SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling. PLoS Genetics, 2010, 6, e1000963.	1.5	36
13	TGFÎ ² superfamily signaling: notes from the desert. Development (Cambridge), 2007, 134, 3565-3569.	1.2	8
14	Glypican LON-2 Is a Conserved Negative Regulator of BMP-like Signaling in Caenorhabditis elegans. Current Biology, 2007, 17, 159-164.	1.8	86
15	Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell, 2006, 5, 235-246.	3.0	181
16	C. Elegans TGF-Î ² Signaling Pathways. , 2006, , 37-53.		1
17	C. elegans serine-threonine kinase KIN-29 modulates TGFbeta signaling and regulates body size formation. BMC Developmental Biology, 2005, 5, 8.	2.1	38
18	Incorporating structure to predict microRNA targets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4006-4009.	3.3	218

RICHARD W PADGETT

#	Article	IF	CITATIONS
19	Methylation as a Crucial Step in Plant microRNA Biogenesis. Science, 2005, 307, 932-935.	6.0	967
20	MicroRNAs: Small regulators with a big impact. Cytokine and Growth Factor Reviews, 2005, 16, 387-393.	3.2	54
21	Genetic screen for small body size mutants inC. elegans reveals many TGF? pathway components. Genesis, 2003, 35, 239-247.	0.8	59
22	A small issue addressed. BioEssays, 2003, 25, 305-308.	1.2	7
23	Insulin worms its way into the spotlight. Genes and Development, 2003, 17, 813-818.	2.7	31
24	lon-1 Regulates Caenorhabditis elegans Body Size Downstream of the dbl-1 TGFÎ ² Signaling Pathway. Developmental Biology, 2002, 246, 418-428.	0.9	61
25	The other side of TGF-β superfamily signal regulation: thinking outside the cell. Trends in Endocrinology and Metabolism, 2002, 13, 295-299.	3.1	48
26	TGFβ-related pathways. Trends in Genetics, 2000, 16, 27-33.	2.9	237
27	SMA-3 Smad Has Specific and Critical Functions in DBL-1/SMA-6 TGFÎ ² -Related Signaling. Developmental Biology, 2000, 223, 70-76.	0.9	39
28	Transforming growth factor \hat{I}^2 signaling mediators and modulators. Gene, 2000, 249, 17-30.	1.0	164
29	Drosophila dSmad2andAtr-Itransmit activin/TGFβ signals. Genes To Cells, 1999, 4, 123-134.	0.5	41
30	TGFbeta signaling pathways and human diseases. , 1999, 18, 247-259.		17
31	Intracellular signaling: Fleshing out the TGFÎ ² pathway. Current Biology, 1999, 9, R408-R411.	1.8	11
32	TGF-β signaling, Smads, and tumor suppressors. BioEssays, 1998, 20, 382-390.	1.2	91
33	Pioneer Axon Guidance by UNC-129, a C. elegans TGF , 1998, 281, 706-709.		194
34	Nomenclature: Vertebrate Mediators of TGFÎ ² Family Signals. Cell, 1996, 87, 173.	13.5	177
35	A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family. Nature, 1987, 325, 81-84.	13.7	782