
Chung-Wei Kung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell. ACS Nano, 2012, 6, 7016-7025.	7.3	333
2	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	11.1	265
3	Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 2019, 7, 17079-17095.	5.2	253
4	Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 2013, 25, 5012-5017.	3.2	242
5	A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 2015, 6, 8304.	5.8	239
6	Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy and Environmental Science, 2011, 4, 3448.	15.6	196
7	Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosensors and Bioelectronics, 2011, 27, 125-131.	5.3	178
8	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	1.9	177
9	Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 2015, 58, 51-56.	2.3	171
10	Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests. Journal of the American Chemical Society, 2018, 140, 3871-3875.	6.6	158
11	A porous, electrically conductive hexa-zirconium(<scp>iv</scp>) metal–organic framework. Chemical Science, 2018, 9, 4477-4482.	3.7	158
12	Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO ₂ Reduction. ACS Energy Letters, 2017, 2, 2394-2401.	8.8	157
13	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 28223-28230.	4.0	145
14	Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals. Advanced Materials, 2015, 27, 7229-7235.	11.1	134
15	Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as <i>in Situ</i> Size-Selective Raman Probes. Journal of the American Chemical Society, 2019, 141, 3893-3900.	6.6	119
16	Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors. Journal of Power Sources, 2012, 214, 91-99.	4.0	114
17	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	6.6	112
18	In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. Journal of Materials Chemistry A, 2016, 4, 10673-10682	5.2	109

CHUNG-WEI KUNG

#	Article	IF	CITATIONS
19	Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy, 2017, 32, 19-27.	8.2	109
20	A high performance electrochemical sensor for acetaminophen based on a rGO–PEDOT nanotube composite modified electrode. Journal of Materials Chemistry A, 2014, 2, 7229-7237.	5.2	106
21	Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2014, 204, 159-166.	4.0	104
22	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	7.2	103
23	Metalâ^'Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis, 2020, 32, 1885-1895.	1.5	103
24	Charge Transport in Zirconium-Based Metal–Organic Frameworks. Accounts of Chemical Research, 2020, 53, 1187-1195.	7.6	100
25	Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 30351-30361.	4.0	97
26	Enhanced Charge Collection in MOFâ€525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Advanced Science, 2017, 4, 1700261.	5.6	95
27	Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films. Chemical Communications, 2015, 51, 2414-2417.	2.2	94
28	Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catalysis, 2018, 8, 9848-9858.	5.5	91
29	Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35319-35326.	4.0	87
30	Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell. Journal of Materials Chemistry, 2010, 20, 9379.	6.7	85
31	Highly efficient plastic-based quasi-solid-state dye-sensitized solarÂcells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. Journal of Power Sources, 2014, 245, 411-417.	4.0	82
32	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	3.2	80
33	An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Solar Energy Materials and Solar Cells, 2016, 147, 75-84.	3.0	78
34	A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. Journal of Materials Chemistry, 2012, 22, 5550.	6.7	76
35	Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11094-11102.	5.2	73
36	Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation. ACS Applied Materials & 2016, 2016, 8, 4175-4184.	4.0	73

CHUNG-WEI KUNG

#	Article	IF	CITATIONS
37	Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers. Scientific Reports, 2016, 6, 34319.	1.6	72
38	Anisotropic Redox Conductivity within a Metal–Organic Framework Material. Journal of the American Chemical Society, 2019, 141, 17696-17702.	6.6	71
39	Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2997-3005.	6.6	71
40	Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 23802-23806.	4.0	67
41	Electronically conductive metalâ \in "organic framework-based materials. APL Materials, 2019, 7, .	2.2	66
42	A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 288, 221-228.	4.0	61
43	Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing. Sensors and Actuators B: Chemical, 2014, 192, 762-768.	4.0	58
44	Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences (Switzerland), 2019, 9, 2427.	1.3	55
45	Inorganic "Conductive Glass―Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 2018, 10, 30532-30540.	4.0	54
46	Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Applied Nano Materials, 2020, 3, 9440-9448.	2.4	50
47	Cerium-Based Metal–Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Applied Materials & Interfaces, 2021, 13, 16418-16426.	4.0	50
48	Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework. Chemistry of Materials, 2019, 31, 1485-1490.	3.2	47
49	Proton Conducting Self-Assembled Metal–Organic Framework/Polyelectrolyte Hollow Hybrid Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 23015-23021.	4.0	46
50	Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode. Journal of Materials Chemistry A, 2013, 1, 13759.	5.2	44
51	Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy. Journal of the American Chemical Society, 2018, 140, 11402-11407.	6.6	44
52	An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Solar Energy Materials and Solar Cells, 2016, 145, 61-68.	3.0	40
53	Toward Metal–Organicâ€Frameworkâ€Based Supercapacitors: Roomâ€Temperature Synthesis of Electrically Conducting MOFâ€Based Nanocomposites Decorated with Redoxâ€Active Manganese. European Journal of Inorganic Chemistry, 2019, 2019, 3036-3044.	1.0	35
54	Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal–Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 6258-6267.	2.5	33

#	Article	IF	CITATIONS
55	An all-organic solid-state electrochromic device containing poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock Cells, 2015, 143, 606-612.	10 Tf 50 3.0	747 Td (fluo 31
56	Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochimica Acta, 2020, 347, 136276.	2.6	31
57	Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors, 2021, 9, 306.	1.8	29
58	Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation. Chemical Communications, 2020, 56, 11763-11766.	2.2	28
59	3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Applied Materials & Interfaces, 2022, 14, 28247-28257.	4.0	28
60	Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 10693.	5.2	26
61	Electroactive Ferrocene at or near the Surface of Metal–Organic Framework UiO-66. Langmuir, 2018, 34, 4707-4714.	1.6	23
62	Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 55358-55366.	4.0	23
63	Synthesis of cobalt oxide thin films in the presence of various anions and their application for the detection of acetaminophen. Sensors and Actuators B: Chemical, 2013, 182, 429-438.	4.0	22
64	Electrochemical synthesis of a doubleâ€layer film of ZnO nanosheets/nanoparticles and its application for dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 440-451.	4.4	22
65	Size-Tunable Synthesis of Palladium Nanoparticles Confined within Topologically Distinct Metal–Organic Frameworks for Catalytic Dehydrogenation of Methanol. Journal of Physical Chemistry C, 2020, 124, 12521-12530.	1.5	22
66	Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate. Analytica Chimica Acta, 2012, 737, 55-63.	2.6	21
67	Liquidâ€Phase Epitaxially Grown Metal–Organic Framework Thin Films for Efficient Tandem Catalysis Through Siteâ€Isolation of Catalytic Centers. ChemPlusChem, 2016, 81, 708-713.	1.3	21
68	Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Applied Nano Materials, 2020, 3, 1448-1456.	2.4	21
69	Selective Formation of Polyaniline Confined in the Nanopores of a Metal–Organic Framework for Supercapacitors. Chemistry - A European Journal, 2021, 27, 3560-3567.	1.7	21
70	Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. Journal of Physical Chemistry C, 2020, 124, 20854-20863.	1.5	18
71	Ce-MOF derived ceria: Insights into the Na-ion storage mechanism as a high-rate performance anode material. Applied Materials Today, 2021, 22, 100935.	2.3	18
72	Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications. Electrochimica Acta, 2015, 172, 61-70.	2.6	17

CHUNG-WEI KUNG

#	Article	IF	CITATIONS
73	Metal–Organic Framework Colloids: Disassembly and Deaggregation. Langmuir, 2016, 32, 6123-6129.	1.6	17
74	Synthesis of Co3O4 thin films by chemical bath deposition in the presence of different anions and application to H2O2 sensing. Procedia Engineering, 2011, 25, 847-850.	1.2	16
75	Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition. Langmuir, 2018, 34, 14143-14150.	1.6	16
76	Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their applications in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 4042-4048.	5.2	15
77	An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochemistry Communications, 2021, 122, 106899.	2.3	13
78	Transport Diffusion of Linear Alkanes (C ₅ –C ₁₆) through Thin Films of ZIF-8 as Assessed by Quartz Crystal Microgravimetry. Langmuir, 2021, 37, 9405-9414.	1.6	9
79	Cerium-based metal–organic framework as an electrocatalyst for the reductive detection of dopamine. Electrochemistry Communications, 2022, 135, 107206.	2.3	7
80	A Single Potassium-Ion Conducting Metal–Organic Framework. ACS Applied Energy Materials, 2022, 5, 8573-8580.	2.5	6
81	Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 9855-9865.	1.3	5
82	lridiumâ€Functionalized Metalâ€Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem, 2022, 14, .	1.8	5
83	Metal–organic framework functionalized poly-cyclodextrin membranes confining polyaniline for charge storage. Chemical Communications, 2022, 58, 6590-6593.	2.2	4
84	Probing Local Donor–Acceptor Charge Transfer in a Metal–Organic Framework Via a Scanning Tunneling Microscope. Journal of Physical Chemistry C, 2020, 124, 21635-21640.	1.5	3
85	Fabrication of a Polymer/Mediator Composite Modified Electrode and its Application to Electrochemical Detection of Iodate. Procedia Engineering, 2011, 25, 1453-1456.	1.2	1
86	Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors. MRS Energy & Sustainability, 2022, 9, 332-341.	1.3	1
87	Pore-confined cobalt sulphide nanoparticles in a metal–organic framework as a catalyst for the colorimetric detection of hydrogen peroxide. Materials Advances, 2022, 3, 6364-6372.	2.6	1
88	Synthesizing of a ZnO film with nanosheets structure on Ti foil for flexible dye-sensitized solar cells. , 2011, , .		0
89	Toward Metal–Organicâ€Frameworkâ€Based Supercapacitors: Roomâ€Temperature Synthesis of Electrically Conducting MOFâ€Based Nanocomposites Decorated with Redoxâ€Active Manganese. European Journal of Inorganic Chemistry, 2019, 2019, 3034-3034.	1.0	0
90	Front Cover: Iridiumâ€Functionalized Metalâ€Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation (ChemCatChem 15/2022). ChemCatChem, 2022, 14, .	1.8	0