Fernando Pardo-Manuel de Villena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142642/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. ELife, 2022, 11, .	2.8	44
2	eQTL mapping using allele-specific count data is computationally feasible, powerful, and provides individual-specific estimates of genetic effects. PLoS Genetics, 2022, 18, e1010076.	1.5	13
3	Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy. Brain Communications, 2022, 4, fcac073.	1.5	7
4	The evolutionary significance of meiotic drive. Heredity, 2022, 129, 44-47.	1.2	8
5	An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mammalian Genome, 2022, 33, 575-589.	1.0	4
6	Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathogens, 2021, 17, e1009287.	2.1	22
7	Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology, 2021, 452, 152696.	2.0	2
8	Bayesian modeling of skewed X inactivation in genetically diverse mice identifies a novel <i>Xce</i> allele associated with copy number changes. Genetics, 2021, 218, .	1.2	5
9	Correlation of Regulatory T Cell Numbers with Disease Tolerance upon Virus Infection. ImmunoHorizons, 2021, 5, 157-169.	0.8	1
10	A k -mer query tool for assessing population diversity in pangenomes. , 2021, , .		0
11	Regulation of protein abundance in genetically diverse mouse populations. Cell Genomics, 2021, 1, 100003.	3.0	27
12	Onchocerca volvulus bivalent subunit vaccine induces protective immunity in genetically diverse collaborative cross recombinant inbred intercross mice. Npj Vaccines, 2021, 6, 17.	2.9	11
13	Immune predictors of mortality following RNA virus infection. Journal of Infectious Diseases, 2020, 221, 882-889.	1.9	10
14	Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine. Psychopharmacology, 2020, 237, 979-996.	1.5	25
15	Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics, 2020, 216, 781-804.	1.2	15
16	Complex Genetic Architecture Underlies Regulation of Influenza-A-Virus-Specific Antibody Responses in the Collaborative Cross. Cell Reports, 2020, 31, 107587.	2.9	31
17	A New Polygenic Model for Nonfamilial Colorectal Cancer Inheritance Based on the Genetic Architecture of the Azoxymethane-Induced Mouse Model. Genetics, 2020, 214, 691-702.	1.2	5
18	Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia, 2020, 61, 2010-2021.	2.6	23

Fernando Pardo-Manuel de

#	Article	IF	CITATIONS
19	<i>Gabra2</i> is a genetic modifier of <i>Scn8a</i> encephalopathy in the mouse*. Epilepsia, 2020, 61, 2847-2856.	2.6	15
20	Dissecting the Genetic Architecture of Cystatin C in Diversity Outbred Mice. G3: Genes, Genomes, Genetics, 2020, 10, 2529-2541.	0.8	9
21	Genetic Background Shapes Phenotypic Response to Diet for Adiposity in the Collaborative Cross. Frontiers in Genetics, 2020, 11, 615012.	1.1	10
22	Instability of the Pseudoautosomal Boundary in House Mice. Genetics, 2019, 212, 469-487.	1.2	15
23	Effects of Preconception and in Utero Inorganic Arsenic Exposure on the Metabolic Phenotype of Genetically Diverse Collaborative Cross Mice. Chemical Research in Toxicology, 2019, 32, 1487-1490.	1.7	7
24	Differential metabolism of inorganic arsenic in mice from genetically diverse Collaborative Cross strains. Archives of Toxicology, 2019, 93, 2811-2822.	1.9	15
25	Identification of a Locus in Mice that Regulates the Collateral Damage and Lethality of Virus Infection. Cell Reports, 2019, 27, 1387-1396.e5.	2.9	5
26	A Diallel of the Mouse Collaborative Cross Founders Reveals Strong Strain-Specific Maternal Effects on Litter Size. G3: Genes, Genomes, Genetics, 2019, 9, 1613-1622.	0.8	11
27	Whole Genome Sequencing and Progress Toward Full Inbreeding of the Mouse Collaborative Cross Population. G3: Genes, Genomes, Genetics, 2019, 9, 1303-1311.	0.8	39
28	Functionally Overlapping Variants Control Tuberculosis Susceptibility in Collaborative Cross Mice. MBio, 2019, 10, .	1.8	36
29	Genetic diversity between mouse strains allows identification of the CC027/GeniUnc strain as an orally reactive model of peanut allergy. Journal of Allergy and Clinical Immunology, 2019, 143, 1027-1037.e7.	1.5	40
30	Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mammalian Genome, 2018, 29, 80-89.	1.0	27
31	Bayesian Diallel Analysis Reveals <i>Mx1</i> -Dependent and <i>Mx1</i> -Independent Effects on Response to Influenza A Virus in Mice. G3: Genes, Genomes, Genetics, 2018, 8, 427-445.	0.8	27
32	Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3: Genes, Genomes, Genetics, 2018, 8, 3447-3468.	0.8	12
33	CC002/Unc females are mouse models of exercise-induced paradoxical fat response. Physiological Reports, 2018, 6, e13716.	0.7	9
34	Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery. Molecular Therapy - Methods and Clinical Development, 2017, 5, 83-92.	1.8	14
35	Structural Variation Shapes the Landscape of Recombination in Mouse. Genetics, 2017, 206, 603-619.	1.2	51
36	Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics, 2017, 206, 557-572.	1.2	66

Fernando Pardo-Manuel de

#	Article	IF	CITATIONS
37	Genomes of the Mouse Collaborative Cross. Genetics, 2017, 206, 537-556.	1.2	189
38	High-Resolution Maps of Mouse Reference Populations. G3: Genes, Genomes, Genetics, 2017, 7, 3427-3434.	0.8	27
39	Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell, 2017, 171, 1015-1028.e13.	13.5	603
40	Sequence and Structural Diversity of Mouse Y Chromosomes. Molecular Biology and Evolution, 2017, 34, 3186-3204.	3.5	54
41	Genetic architecture of atherosclerosis dissected by QTL analyses in three F2 intercrosses of apolipoprotein E-null mice on C57BL6/J, DBA/2J and 129S6/SvEvTac backgrounds. PLoS ONE, 2017, 12, e0182882.	1.1	4
42	Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3: Genes, Genomes, Genetics, 2017, 7, 1623-1630.	0.8	26
43	Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3: Genes, Genomes, Genetics, 2017, 7, 1665-1682.	0.8	38
44	Allelic Variation in the Toll-Like Receptor Adaptor Protein <i>Ticam2</i> Contributes to SARS-Coronavirus Pathogenesis in Mice. G3: Genes, Genomes, Genetics, 2017, 7, 1653-1663.	0.8	75
45	The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3: Genes, Genomes, Genetics, 2016, 6, 263-279.	0.8	199
46	Whole Genome Sequence of Two Wild-Derived <i>Mus musculus domesticus</i> Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers. G3: Genes, Genomes, Genetics, 2016, 6, 4211-4216.	0.8	12
47	Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3: Genes, Genomes, Genetics, 2016, 6, 3893-3902.	0.8	66
48	Longâ€term exercise in mice has sexâ€dependent benefits on body composition and metabolism during aging. Physiological Reports, 2016, 4, e13011.	0.7	49
49	Transcriptional profiles of WNV neurovirulence in a genetically diverse Collaborative Cross population. Genomics Data, 2016, 10, 137-140.	1.3	9
50	Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross. Journal of Anatomy, 2016, 228, 96-112.	0.9	29
51	The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics, 2016, 204, 267-285.	1.2	21
52	<i>R2d2</i> Drives Selfish Sweeps in the House Mouse. Molecular Biology and Evolution, 2016, 33, 1381-1395.	3.5	55
53	The Founder Strains of the Collaborative Cross Express a Complex Combination of Advantageous and Deleterious Traits for Male Reproduction. G3: Genes, Genomes, Genetics, 2015, 5, 2671-2683.	0.8	28
54	Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genetics, 2015, 11, e1005504.	1.5	137

#	Article	IF	CITATIONS
55	IsoDOT Detects Differential RNA-Isoform Expression/Usage With Respect to a Categorical or Continuous Covariate With High Sensitivity and Specificity. Journal of the American Statistical Association, 2015, 110, 975-986.	1.8	10
56	The â€~Omics' of Voluntary Exercise: Systems Approaches to a Complex Phenotype. Trends in Endocrinology and Metabolism, 2015, 26, 673-675.	3.1	9
57	Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nature Communications, 2015, 6, 6118.	5.8	247
58	A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2. PLoS Genetics, 2015, 11, e1004850.	1.5	76
59	Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nature Genetics, 2015, 47, 353-360.	9.4	204
60	Identification of microRNAs associated with allergic airway disease using a genetically diverse mouse population. BMC Genomics, 2015, 16, 633.	1.2	22
61	Genetic Regulation of <i>Zfp30</i> , CXCL1, and Neutrophilic Inflammation in Murine Lung. Genetics, 2014, 198, 735-745.	1.2	44
62	Annotation of long non-coding RNAs expressed in Collaborative Cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biology, 2014, 11, 875-890.	1.5	122
63	Genetics of Adverse Reactions to Haloperidol in a Mouse Diallel: A Drug–Placebo Experiment and Bayesian Causal Analysis. Genetics, 2014, 196, 321-347.	1.2	30
64	High-Resolution Sex-Specific Linkage Maps of the Mouse Reveal Polarized Distribution of Crossovers in Male Germline. Genetics, 2014, 197, 91-106.	1.2	85
65	The Collaborative Cross as a Resource for Modeling Human Disease: CC011/Unc, a New Mouse Model for Spontaneous Colitis. Mammalian Genome, 2014, 25, 95-108.	1.0	78
66	Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science, 2014, 346, 987-991.	6.0	262
67	Genomic Profiling of Collaborative Cross Founder Mice Infected with Respiratory Viruses Reveals Novel Transcripts and Infection-Related Strain-Specific Gene and Isoform Expression. G3: Genes, Genomes, Genetics, 2014, 4, 1429-1444.	0.8	25
68	C57BL/6N Mutation in <i>Cytoplasmic FMRP interacting protein 2</i> Regulates Cocaine Response. Science, 2013, 342, 1508-1512.	6.0	198
69	Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mammalian Genome, 2013, 24, 1-20.	1.0	56
70	Genetic Architecture of Skewed X Inactivation in the Laboratory Mouse. PLoS Genetics, 2013, 9, e1003853.	1.5	41
71	Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross. PLoS Pathogens, 2013, 9, e1003196.	2.1	183
72	Expression Quantitative Trait Loci for Extreme Host Response to Influenza A in Pre-Collaborative Cross Mice. G3: Genes, Genomes, Genetics, 2012, 2, 213-221.	0.8	78

#	Article	IF	CITATIONS
73	Transcriptome Atlases of Mouse Brain Reveals Differential Expression Across Brain Regions and Genetic Backgrounds. G3: Genes, Genomes, Genetics, 2012, 2, 203-211.	0.8	18
74	Inferring ancestry in admixed populations using microarray probe intensities. , 2012, , .		16
75	Genetic Analysis of Hematological Parameters in Incipient Lines of the Collaborative Cross. G3: Genes, Genomes, Genetics, 2012, 2, 157-165.	0.8	80
76	Imputation of Single-Nucleotide Polymorphisms in Inbred Mice Using Local Phylogeny. Genetics, 2012, 190, 449-458.	1.2	42
77	Status and access to the Collaborative Cross population. Mammalian Genome, 2012, 23, 706-712.	1.0	134
78	Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics, 2012, 13, 34.	1.2	61
79	Comparative analysis and visualization of multiple collinear genomes. BMC Bioinformatics, 2012, 13, S13.	1.2	54
80	Subspecific origin and haplotype diversity in the laboratory mouse. Nature Genetics, 2011, 43, 648-655.	9.4	439
81	Dynamic visualization and comparative analysis of multiple collinear genomic data. , 2011, 2011, 335-339.		2
82	Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Research, 2011, 21, 1213-1222.	2.4	327
83	The Collaborative Cross: A Recombinant Inbred Mouse Population for the Systems Genetic Era. ILAR Journal, 2011, 52, 24-31.	1.8	183
84	Architecture of energy balance traits in emerging lines of the Collaborative Cross. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E1124-E1134.	1.8	58
85	Collaborative Cross mice and their power to map host susceptibility to <i>Aspergillus fumigatus</i> infection. Genome Research, 2011, 21, 1239-1248.	2.4	138
86	Efficient genome ancestry inference in complex pedigrees with inbreeding. Bioinformatics, 2010, 26, i199-i207.	1.8	42
87	A customized and versatile high-density genotyping array for the mouse. Nature Methods, 2009, 6, 663-666.	9.0	236
88	TreeQA: quantitative genome wide association mapping using local perfect phylogeny trees. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2009, , 415-26.	0.7	10
89	TREEQA: QUANTITATIVE GENOME WIDE ASSOCIATION MAPPING USING LOCAL PERFECT PHYLOGENY TREES. , 2008, , .		9
90	On the subspecific origin of the laboratory mouse. Nature Genetics, 2007, 39, 1100-1107.	9.4	281

Fernando Pardo-Manuel de

#	Article	IF	CITATIONS
91	The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mammalian Genome, 2007, 18, 473-481.	1.0	237
92	The Paternal Gene of the DDK Syndrome Maps to the Schlafen Gene Cluster on Mouse Chromosome 11. Genetics, 2006, 172, 411-423.	1.2	32
93	Genetic and Haplotype Diversity Among Wild-Derived Mouse Inbred Strains. Genome Research, 2004, 14, 1880-1887.	2.4	90
94	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
95	Nonrandom segregation during meiosis: the unfairness of females. Mammalian Genome, 2001, 12, 331-339.	1.0	209
96	Female Meiosis Drives Karyotypic Evolution in Mammals. Genetics, 2001, 159, 1179-1189.	1.2	224