## Tomoyuki Johzaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142586/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser. Scientific Reports,<br>2013, 3, 1170.                                                                       | 3.3  | 246       |
| 2  | Optimization of cone target geometry for fast ignition. Physics of Plasmas, 2007, 14, .                                                                                                         | 1.9  | 75        |
| 3  | Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states.<br>Nature Communications, 2018, 9, 3937.                                                    | 12.8 | 75        |
| 4  | Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target. Physical Review Letters, 2004, 92, 195001.                                                      | 7.8  | 74        |
| 5  | Simulation and design study of cryogenic cone shell target for Fast Ignition Realization Experiment project. Physics of Plasmas, 2007, 14, 056303.                                              | 1.9  | 57        |
| 6  | Experimental study on self-acceleration in expanding spherical hydrogen-air flames. International<br>Journal of Hydrogen Energy, 2018, 43, 12556-12564.                                         | 7.1  | 57        |
| 7  | Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Physics and Controlled Fusion, 2011, 53, 124029.                                                                        | 2.1  | 55        |
| 8  | Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field. Physics of Plasmas, 2016, 23, .                                     | 1.9  | 54        |
| 9  | Fast ignition integrated interconnecting code project for cone-guided targets. Laser and Particle<br>Beams, 2006, 24, 191-198.                                                                  | 1.0  | 45        |
| 10 | Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project.<br>Nuclear Fusion, 2009, 49, 104024.                                                         | 3.5  | 45        |
| 11 | Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision.<br>Physical Review Letters, 2009, 102, 235002.                                              | 7.8  | 45        |
| 12 | High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Physics and Controlled Fusion, 2012, 54, 124042. | 2.1  | 40        |
| 13 | Prepulse effects on the generation of high energy electrons in fast ignition scheme. Physics of Plasmas, 2010, 17, .                                                                            | 1.9  | 38        |
| 14 | Kα spectroscopy to study energy transport in ultrahigh-intensity laser produced plasmas. Journal of<br>Quantitative Spectroscopy and Radiative Transfer, 2003, 81, 327-337.                     | 2.3  | 37        |
| 15 | Foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Nuclear Fusion, 2005, 45, 1277-1283.                                                                      | 3.5  | 34        |
| 16 | Holistic Simulation for FIREX Project with FI <sup>3</sup> . Laser and Particle Beams, 2007, 25, 621-629.                                                                                       | 1.0  | 34        |
| 17 | Electron surface acceleration on a solid capillary target inner wall irradiated with ultraintense laser pulses. Physics of Plasmas, 2007, 14, 053112.                                           | 1.9  | 31        |
| 18 | Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror. Applied Optics, 2016, 55, 6850.                                                                                   | 2.1  | 30        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Present status of fast ignition realization experiment and inertial fusion energy development. Nuclear<br>Fusion, 2013, 53, 104021.                                                        | 3.5 | 27        |
| 20 | Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse.<br>Physical Review Letters, 2020, 124, 035001.                                            | 7.8 | 26        |
| 21 | Experimental study on the onset of flame acceleration due to cellular instabilities. Journal of Loss<br>Prevention in the Process Industries, 2019, 60, 264-268.                           | 3.3 | 24        |
| 22 | Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.<br>Physical Review E, 2015, 91, 063102.                                             | 2.1 | 23        |
| 23 | Study of fast electron transport in hot dense matter using x-ray spectroscopy. Plasma Physics and<br>Controlled Fusion, 2005, 47, B823-B831.                                               | 2.1 | 22        |
| 24 | Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses.<br>Laser and Particle Beams, 2006, 24, 5-8.                                             | 1.0 | 22        |
| 25 | Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density<br>Physics, 2012, 8, 227-230.                                                            | 1.5 | 22        |
| 26 | X-ray line polarization spectroscopy to study hot electron transport in ultra-short laser produced plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 99, 305-313. | 2.3 | 21        |
| 27 | Fokker–Planck simulations for core heating in subignition cone-guiding fast ignition targets. Physics of Plasmas, 2009, 16, .                                                              | 1.9 | 21        |
| 28 | Generation and confinement of high energy electrons generated by irradiation of ultra-intense short<br>laser pulses onto cone targets. Laser and Particle Beams, 2008, 26, 207-212.        | 1.0 | 20        |
| 29 | Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge<br>Mode. Journal of Thermal Spray Technology, 2016, 25, 494-508.                              | 3.1 | 20        |
| 30 | Comparative study of laser ignition and spark-plug ignition in high-speed flows. Combustion and Flame, 2018, 191, 408-416.                                                                 | 5.2 | 19        |
| 31 | Progress and perspectives of fast ignition. Plasma Physics and Controlled Fusion, 2004, 46, B41-B49.                                                                                       | 2.1 | 18        |
| 32 | Generation of pre-formed plasma and its reduction for fast-ignition. Laser and Particle Beams, 2012, 30, 95-102.                                                                           | 1.0 | 18        |
| 33 | An experimental study on the ignition ability of a laser-induced gaseous breakdown. Combustion and<br>Flame, 2017, 178, 1-6.                                                               | 5.2 | 18        |
| 34 | Self-similar propagation of spherically expanding flames in lean hydrogen–air mixtures. International<br>Journal of Hydrogen Energy, 2020, 45, 25608-25614.                                | 7.1 | 16        |
| 35 | Analysis of Core Plasma Heating by Relativistic Electrons in Fast Ignition. Fusion Science and Technology, 2003, 43, 428-436.                                                              | 1.1 | 15        |
| 36 | Minimum ignition energy and minimum explosible concentration of L-isoleucine and glycine powder.<br>Powder Technology, 2019, 347, 207-214.                                                 | 4.2 | 14        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Control of unsteady laser-produced plasma-flow with a multiple-coil magnetic nozzle. Scientific<br>Reports, 2017, 7, 8910.                                                               | 3.3 | 13        |
| 38 | Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction. Communications Physics, 2019, 2, .                   | 5.3 | 11        |
| 39 | Numerical study of $\hat{Kl_{\pm}}$ emission from partially ionized chlorine. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 81, 237-246.                            | 2.3 | 10        |
| 40 | X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser. Journal of Applied<br>Physics, 2012, 112, 063301.                                                       | 2.5 | 10        |
| 41 | Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket.<br>Applied Physics Letters, 2011, 99, .                                                   | 3.3 | 9         |
| 42 | Implosion and core heating requirements in subignition experiments FIREX-I. Physics of Plasmas, 2008, 15, 062702.                                                                        | 1.9 | 8         |
| 43 | The formation of high-density core plasma in non-spherical implosion using high-resolution two-dimensional integrated implosion code. Journal of Plasma Physics, 2006, 72, 791.          | 2.1 | 7         |
| 44 | Intensification of laser-produced relativistic electron beam using converging magnetic fields for ignition in fast ignition laser fusion. High Energy Density Physics, 2020, 36, 100841. | 1.5 | 7         |
| 45 | Enhancement of water-window soft x-ray emission from laser-produced Au plasma under<br>low-pressure nitrogen atmosphere. Optics Letters, 2019, 44, 1439.                                 | 3.3 | 7         |
| 46 | Design of a cone target for fast ignition. EPJ Web of Conferences, 2013, 59, 03009.                                                                                                      | 0.3 | 6         |
| 47 | Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration. Journal of Physics: Conference Series, 2016, 717, 012102.             | 0.4 | 6         |
| 48 | Simulation on interactions of X-ray and charged particles with first wall for IFE reactor. Fusion Engineering and Design, 2005, 73, 95-103.                                              | 1.9 | 5         |
| 49 | Effects of long rarefied plasma on fast electron generation for FIREX-I targets. Laser and Particle<br>Beams, 2012, 30, 103-109.                                                         | 1.0 | 5         |
| 50 | Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma. High Energy<br>Density Physics, 2013, 9, 435-438.                                                 | 1.5 | 5         |
| 51 | The Measurement of Plasma Structure in a Magnetic Thrust Chamber. Plasma and Fusion Research, 2016, 11, 3406012-3406012.                                                                 | 0.7 | 5         |
| 52 | Reinjection of transmitted laser light into laser-produced plasma for efficient laser ignition. Applied<br>Optics, 2016, 55, 1132.                                                       | 2.1 | 5         |
| 53 | Experiments on laser cleaning of sooted optical windows. Applied Optics, 2018, 57, 10522.                                                                                                | 1.8 | 5         |
| 54 | Ignition condition and gain scaling of low temperature ignition targets. Nuclear Fusion, 1998, 38, 467-479.                                                                              | 3.5 | 4         |

4

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Accuracy validation of flux limited diffusion models for calculating alpha particle transport in ICF plasmas. Nuclear Fusion, 1999, 39, 753-764.                                                                                  | 3.5 | 4         |
| 56 | Simulation Study of Ignition and Burn Characteristics of Fast Ignition DT Targets. Plasma and Fusion Research, 2007, 2, 041-041.                                                                                                  | 0.7 | 4         |
| 57 | High Energy Electron Generation by Laser-Cone Interaction. Plasma and Fusion Research, 2007, 2, 018-018.                                                                                                                          | 0.7 | 4         |
| 58 | Effects of pre-formed plasma inside a guiding cone in fast ignition scheme. Journal of Physics:<br>Conference Series, 2010, 244, 022079.                                                                                          | 0.4 | 3         |
| 59 | Reduction of air flow rate for pulse-detonation-turbine-engine operation by water-droplet injection.<br>Journal of Thermal Science and Technology, 2016, 11, JTST0022-JTST0022.                                                   | 1.1 | 3         |
| 60 | Observation of water-window soft x-ray emission from laser-produced Au plasma under optically thin condition. High Energy Density Physics, 2020, 37, 100845.                                                                      | 1.5 | 3         |
| 61 | Enhanced relativistic electron beams intensity with self-generated resistive magnetic field. High<br>Energy Density Physics, 2020, 36, 100773.                                                                                    | 1.5 | 3         |
| 62 | Hot Electron Spectra in Plain, Cone and Integrated Targets for FIREX-I using Electron Spectrometer.<br>Plasma and Fusion Research, 2013, 8, 2404125-2404125.                                                                      | 0.7 | 2         |
| 63 | Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket.<br>Japanese Journal of Applied Physics, 2018, 57, 050303.                                                                      | 1.5 | 2         |
| 64 | Thomson Scattering Measurement of Laser-Produced Plasma in a Magnetic Thrust Chamber. Plasma and Fusion Research, 2018, 13, 1306016-1306016.                                                                                      | 0.7 | 2         |
| 65 | Hot Electron and Ion Spectra in Axial and Transverse Laser Irradiation in the GXII-LFEX Direct Fast<br>Ignition Experiment. Plasma and Fusion Research, 2021, 16, 2404076-2404076.                                                | 0.7 | 2         |
| 66 | Analysis of Laser Wavelength and Energy Dependences of the Impulse in a Magnetic Thrust Chamber<br>System for a Laser Fusion Rocket. Transactions of the Japan Society for Aeronautical and Space<br>Sciences, 2013, 56, 170-172. | 0.7 | 2         |
| 67 | 10-Hz beads pellet injection and laser engagement. Nuclear Fusion, 0, , .                                                                                                                                                         | 3.5 | 2         |
| 68 | Experimental Demonstration of Magnetic Thrust Chamber for a Laser Fusion Rocket. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2012, 10, Pb_109-Pb_114.                       | 0.2 | 1         |
| 69 | Direct heating of imploded plasma in the fast ignition. Journal of Physics: Conference Series, 2016, 688, 012114.                                                                                                                 | 0.4 | 1         |
| 70 | Enhanced heat transport in ablation plasma under transverse magnetic field by upper hybrid<br>resonance heating. High Energy Density Physics, 2019, 30, 8-12.                                                                     | 1.5 | 1         |
| 71 | Deflagration-to-detonation transition in laser-ignited explosive gas contained in a smooth-wall tube.<br>Combustion and Flame, 2020, 219, 275-282.                                                                                | 5.2 | 1         |
| 72 | Advanced Target Design for the FIREX-I Project. Plasma and Fusion Research, 2009, 4, S1001-S1001.                                                                                                                                 | 0.7 | 1         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Simple Analysis of the Laser-to-Core Energy Coupling Efficiency with Magnetized Fast Isochoric Laser<br>Heating. Plasma and Fusion Research, 2019, 14, 3404138-3404138.                                                         | 0.7 | 1         |
| 74 | Direct fast heating efficiency of a counter-imploded core plasma employing a laser for fast ignition experiments (LFEX). Nuclear Fusion, 2022, 62, 096013.                                                                      | 3.5 | 1         |
| 75 | Neutron Heating Effect in Laser-Imploded DT Pellet. Journal of Nuclear Science and Technology, 1995, 32, 81-83.                                                                                                                 | 1.3 | 0         |
| 76 | Neutronic effects in reactor-size ICF targets. Fusion Engineering and Design, 1999, 44, 181-185.                                                                                                                                | 1.9 | 0         |
| 77 | Fast ignition integrated experiments on GEKKO-LFEX laser facility. , 2011, , .                                                                                                                                                  |     | 0         |
| 78 | Energy Transportation by MeV Hot Electrons in Fast Ignition Plasma Driven with LFEX PW Laser. Plasma<br>and Fusion Research, 2014, 9, 1404118-1404118.                                                                          | 0.7 | 0         |
| 79 | Acceleration of Miniature Targets by Kilo-Tesla Magnetic Field. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2015, 13, 17-21.                                              | 0.2 | 0         |
| 80 | Development of a magnetic thrust chamber for a laser fusion rocket. , 2016, , .                                                                                                                                                 |     | 0         |
| 81 | Numerical analysis on a conical shaped target for laser fusion rocket. High Energy Density Physics, 2020, 37, 100894.                                                                                                           | 1.5 | 0         |
| 82 | Improvement of ignition and burning target designÂfor fast ignition scheme. Nuclear Fusion, 2021, 61, 126032.                                                                                                                   | 3.5 | 0         |
| 83 | Integration of Individual Simulation Codes for Fast Ignition. The Review of Laser Engineering, 2004, 32, 324-329.                                                                                                               | 0.0 | 0         |
| 84 | Distortion of Bulk-Electron Distribution Function and Its Effect on Core Heating in Fast Ignition<br>Plasmas. Plasma and Fusion Research, 2010, 5, S2070-S2070.                                                                 | 0.7 | 0         |
| 85 | Magnetic Thrust Chamber Propulsion System for Controlling Laser-Produced Plasma by Magnetic<br>Fields. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology<br>Japan, 2010, 8, Tb_1-Tb_4. | 0.2 | 0         |
| 86 | Material Dependence of Energy Spectra of Fast Electrons Generated by Use of High Contrast Laser. The<br>Review of Laser Engineering, 2013, 41, 49.                                                                              | 0.0 | 0         |
| 87 | Efficient Fast Heating of Dense Core Plasma by Laser-Driven Strong Magnetic Field. The Review of Laser Engineering, 2019, 47, 536.                                                                                              | 0.0 | 0         |