## Oliver T Bruns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5142350/publications.pdf

Version: 2024-02-01

43 papers

6,732 citations

126708 33 h-index 42 g-index

45 all docs 45 does citations

45 times ranked

11416 citing authors

| #  | Article                                                                                                                                                                                                          | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Brown adipose tissue activity controls triglyceride clearance. Nature Medicine, 2011, 17, 200-205.                                                                                                               | 15.2        | 1,367     |
| 2  | Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4465-4470. | 3.3         | 498       |
| 3  | Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature Biomedical Engineering, 2017, 1, .                                                                                         | 11.6        | 490       |
| 4  | Size and Surface Effects on the MRI Relaxivity of Manganese Ferrite Nanoparticle Contrast Agents.<br>Nano Letters, 2007, 7, 2422-2427.                                                                           | <b>4.</b> 5 | 401       |
| 5  | A Highly Effective, Nontoxic <i>T</i> <sub>1</sub> MR Contrast Agent Based on Ultrasmall PEGylated Iron Oxide Nanoparticles. Nano Letters, 2009, 9, 4434-4440.                                                   | 4.5         | 385       |
| 6  | Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2325-2330.                               | 3.3         | 374       |
| 7  | Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie -<br>International Edition, 2017, 56, 13126-13129.                                                                 | 7.2         | 301       |
| 8  | Magneto-fluorescent core-shell supernanoparticles. Nature Communications, 2014, 5, 5093.                                                                                                                         | <b>5.</b> 8 | 223       |
| 9  | Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nature Communications, 2016, 7, 12749.                                                                 | 5.8         | 209       |
| 10 | Cellular and Molecular Probing of Intact Human Organs. Cell, 2020, 180, 796-812.e19.                                                                                                                             | 13.5        | 187       |
| 11 | Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nature Chemistry, 2020, 12, 1123-1130.                                   | 6.6         | 172       |
| 12 | Uptake of Colloidal Polyelectrolyte oated Particles and Polyelectrolyte Multilayer Capsules by Living Cells. Advanced Materials, 2008, 20, 4281-4287.                                                            | 11.1        | 170       |
| 13 | Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nature Nanotechnology, 2009, 4, 193-201.                                                           | 15.6        | 159       |
| 14 | Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nature Medicine, 2018, 24, 292-303.                                                                                     | 15.2        | 154       |
| 15 | Shortwave Infrared in Vivo Imaging with Gold Nanoclusters. Nano Letters, 2017, 17, 6330-6334.                                                                                                                    | 4.5         | 149       |
| 16 | Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.                                 | 1.8         | 145       |
| 17 | Comparative Examination of the Stability of Semiconductor Quantum Dots in Various Biochemical Buffers. Journal of Physical Chemistry B, 2006, 110, 1959-1963.                                                    | 1.2         | 128       |
|    |                                                                                                                                                                                                                  |             |           |

| #  | Article                                                                                                                                                                                                               | IF   | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as <i>in Vivo</i> Two-Photon Oxygen Sensors. Journal of the American Chemical Society, 2015, 137, 9832-9842.                                                    | 6.6  | 104       |
| 20 | Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color <i>In Vivo</i> In Imaging with Shortwave Infrared Detection. Journal of the American Chemical Society, 2021, 143, 6836-6846.                             | 6.6  | 98        |
| 21 | Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. Journal of Hepatology, 2013, 58, 112-118.                                                                                | 1.8  | 91        |
| 22 | Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9080-9085.      | 3.3  | 89        |
| 23 | A Simple and Widely Applicable Method to <sup>59</sup> Fe-Radiolabel Monodisperse Superparamagnetic Iron Oxide Nanoparticles for <i>In Vivo</i> Quantification Studies. ACS Nano, 2012, 6, 7318-7325.                 | 7.3  | 82        |
| 24 | Wide-field three-photon excitation in biological samples. Light: Science and Applications, 2017, 6, e16255-e16255.                                                                                                    | 7.7  | 67        |
| 25 | Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nature Methods, 2022, 19, 353-358.                                                                                                 | 9.0  | 65        |
| 26 | Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1. Mechanisms of Ageing and Development, 2010, 131, 389-404.                                                                   | 2.2  | 57        |
| 27 | Structural characterization of $\hat{l}^2$ -sheeted oligomers formed on the pathway of oxidative prion protein aggregation in vitro. Journal of Structural Biology, 2007, 157, 308-320.                               | 1.3  | 51        |
| 28 | Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metabolism, 2021, 33, 547-564.e7.                                                                        | 7.2  | 48        |
| 29 | Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie, 2017, 129, 13306-13309.                                                                                                | 1.6  | 47        |
| 30 | Selectins Mediate Small Cell Lung Cancer Systemic Metastasis. PLoS ONE, 2014, 9, e92327.                                                                                                                              | 1.1  | 45        |
| 31 | Using the shortwave infrared to image middle ear pathologies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9989-9994.                                                  | 3.3  | 44        |
| 32 | Intraperitoneal Injection Improves the Uptake of Nanoparticle-Labeled High-Density Lipoprotein to Atherosclerotic Plaques Compared With Intravenous Injection. Circulation: Cardiovascular Imaging, 2014, 7, 303-311. | 1.3  | 43        |
| 33 | Compact zwitterion-coated iron oxide nanoparticles for <i>in vitro</i> and <i>in vivo</i> imaging. Integrative Biology (United Kingdom), 2013, 5, 108-114.                                                            | 0.6  | 37        |
| 34 | Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nature Biomedical Engineering, 2020, 4, 801-813.                                          | 11.6 | 34        |
| 35 | Investigations on the Usefulness of CEACAMs as Potential Imaging Targets for Molecular Imaging Purposes. PLoS ONE, 2011, 6, e28030.                                                                                   | 1.1  | 18        |
| 36 | The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver. Beilstein Journal of Nanotechnology, 2014, 5, 1432-1440.          | 1.5  | 13        |

| #  | Article                                                                                                                                                                                                      | IF  | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nanocrystals, a New Tool to Study Lipoprotein Metabolism and Atherosclerosis. Current Pharmaceutical Biotechnology, 2012, 13, 365-372.                                                                       | 0.9 | 10        |
| 38 | Increasing the penetration depth of temporal focusing multiphoton microscopy for neurobiological applications. Journal Physics D: Applied Physics, 2019, 52, 264001.                                         | 1.3 | 10        |
| 39 | Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs. Journal of Biomedical Optics, 2015, 20, 061107.                                       | 1.4 | 9         |
| 40 | High resolution structure of streptavidin in complex with a novel high affinity peptide tag mimicking the biotin binding motif. Proteins: Structure, Function and Bioinformatics, 2007, 67, 1147-1153.       | 1.5 | 8         |
| 41 | Initial findings of shortwave infrared otoscopy in a pediatric population. International Journal of Pediatric Otorhinolaryngology, 2018, 114, 15-19.                                                         | 0.4 | 8         |
| 42 | Determination of liverâ€specific <i>r</i> <sub>2</sub> * of a highly monodisperse USPIO by <sup>59</sup> Fe iron coreâ€labeling in mice at 3 T MRI. Contrast Media and Molecular Imaging, 2015, 10, 153-162. | 0.4 | 5         |
| 43 | Near-Infrared Temporal Focusing Microscopy with Quantum Dot Fluorophores. , 2016, , .                                                                                                                        |     | 0         |