Marley J Dewey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514211/publications.pdf

Version: 2024-02-01

		1039406	1125271
13	329	9	13
papers	citations	h-index	g-index
22	22	22	298
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Repair of critical-size porcine craniofacial bone defects using a collagen–polycaprolactone composite biomaterial. Biofabrication, 2022, 14, 014102.	3.7	12
2	Inclusion of a 3D-printed Hyperelastic Bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomaterialia, 2021, 121, 224-236.	4.1	30
3	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	1.7	22
4	Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. Materialia, 2021, 18, 101149.	1.3	11
5	<i>î²</i> â€Catenin Limits Osteogenesis on Regenerative Materials in a Stiffnessâ€Dependent Manner. Advanced Healthcare Materials, 2021, 10, e2101467.	3.9	11
6	Stiffness of Nanoparticulate Mineralized Collagen Scaffolds Triggers Osteogenesis via Mechanotransduction and Canonical Wnt Signaling. Macromolecular Bioscience, 2021, 21, e2000370.	2.1	24
7	Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Advances, 2020, 10, 26982-26996.	1.7	12
8	Mineralized collagen scaffolds fabricated with amniotic membrane matrix increase osteogenesis under inflammatory conditions. International Journal of Energy Production and Management, 2020, 7, 247-258.	1.9	23
9	Anisotropic mineralized collagen scaffolds accelerate osteogenic response in a glycosaminoglycan-dependent fashion. RSC Advances, 2020, 10, 15629-15641.	1.7	23
10	Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds. Science Advances, 2019, 5, eaaw4991.	4.7	46
11	Shape-fitting collagen-PLA composite promotes osteogenic differentiation of porcine adipose stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 21-33.	1.5	37
12	Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 823-834.	1.3	30
13	Incorporation of the Amniotic Membrane as an Immunomodulatory Design Element in Collagen Scaffolds for Tendon Repair. ACS Biomaterials Science and Engineering, 2018, 4, 4367-4377.	2.6	41