Parimelazhagan Thangaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative evaluation of different extraction methods for antioxidant and anti-inflammatory properties from Osbeckia parvifolia Arn. – An in vitro approach. Journal of King Saud University - Science, 2014, 26, 267-275.	1.6	124
2	Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 2013, 147, 302-310.	2.0	62
3	α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chemico-Biological Interactions, 2016, 254, 54-62.	1.7	55
4	Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw International Journal of Nanomedicine, 2016, Volume 11, 5789-5806.	3.3	46
5	Role of Photoactive Phytocompounds in Photodynamic Therapy of Cancer. Molecules, 2020, 25, 4102.	1.7	43
6	Antioxidant, analgesic, anti-inflammatory and antipyretic effects of polyphenols from Passiflora subpeltata leaves – A promising species of Passiflora. Industrial Crops and Products, 2014, 54, 272-280.	2.5	41
7	Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi Journal of Biological Sciences, 2014, 21, 409-416.	1.8	41
8	Effects of luteolin and quercetin 3-β-d-glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomedicine and Pharmacotherapy, 2016, 83, 1278-1285.	2.5	41
9	UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties. Food Research International, 2018, 108, 611-620.	2.9	35
10	Antioxidant and anticancer activities of Plectranthus stocksii Hook. f. leaf and stem extracts. Agriculture and Natural Resources, 2017, 51, 63-73.	0.4	34
11	Anti-inflammatory and wound healing properties of Rubus fairholmianus Gard. root—An in vivo study. Industrial Crops and Products, 2014, 54, 216-225.	2.5	32
12	Antitumor and Wound Healing Properties of Rubus ellipticus Smith JAMS Journal of Acupuncture and Meridian Studies, 2015, 8, 134-141.	0.3	32
13	Anti-inflammatory, wound healing and in-vivo antioxidant properties of the leaves of Ficus amplissima Smith. Journal of Ethnopharmacology, 2013, 145, 139-145.	2.0	31
14	Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models. Life Sciences, 2019, 229, 139-148.	2.0	31
15	Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research. Phytomedicine, 2022, 96, 153842.	2.3	30
16	<i>In vitro</i> anti-oxidant and cytotoxic analysis of <i>Pogostemon mollis</i> Benth. Bangladesh Journal of Pharmacology, 2015, 11, 148.	0.1	29
17	Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice. Biomedicine and Pharmacotherapy, 2016, 84, 454-461.	2.5	29
18	Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R.Br. ex Wight polyphenols during in vitro simulated digestion. Food Chemistry, 2022, 372, 131294.	4.2	28

#	Article	IF	CITATIONS
19	Effect of inÂvitro simulated gastrointestinal digestion of Phoenix loureirii on polyphenolics, antioxidant and acetylcholinesterase inhibitory activities. LWT - Food Science and Technology, 2016, 74, 363-370.	2.5	27
20	Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells. Asian Pacific Journal of Tropical Medicine, 2013, 6, 11-19.	0.4	25
21	Effects of in vitro simulated gastrointestinal digestion on the antioxidant, α-glucosidase and α-amylase inhibitory activities of water-soluble polysaccharides from Opilia amentacea roxb fruit. LWT - Food Science and Technology, 2019, 111, 774-781.	2.5	25
22	Nutritional analysis and antioxidant activity of palmyrah (Borassus flabellifer L.) seed embryo for potential use as food source. Food Science and Biotechnology, 2011, 20, 143-149.	1.2	24
23	Antidiabetic activity of aqueous root extract of Merremia tridentata (L.) Hall. f. in streptozotocin–induced–diabetic rats. Asian Pacific Journal of Tropical Medicine, 2012, 5, 175-179.	0.4	22
24	Gastroprotective effect and mode of action of methanol extract of Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir (Lamiaceae) leaves on experimental gastric ulcer models. Biomedicine and Pharmacotherapy, 2018, 97, 1109-1118.	2.5	20
25	Antioxidant, anti-inflammatory activity, and phytochemical constituents of ficus (Ficus amplissima) Tj ETQq1 1 C).784314 t 1.2	rgBT ₈ Overlo <mark>c</mark>
26	Evaluation of antioxidant, anti-inflammatory, and antiulcer properties of Vaccinium leschenaultii Wight: A therapeutic supplement. Journal of Food and Drug Analysis, 2015, 23, 376-386.	0.9	18
27	Caspase dependent apoptotic activity of Rubus fairholmianus Gard. on MCF-7 human breast cancer cell lines. Journal of Applied Biomedicine, 2016, 14, 211-219.	0.6	18
28	Antioxidant and antimicrobial investigations of Elaeocarpus tectorius (Lour.) Poir. fruits against urinary tract infection pathogens Biocatalysis and Agricultural Biotechnology, 2019, 20, 101260.	1.5	18
29	Protective effects of flavonoid composition rich P. subpeltata Ortega. on indomethacin induced experimental ulcerative colitis in rat models of inflammatory bowel diseases. Journal of Ethnopharmacology, 2020, 248, 112350.	2.0	17
30	Phytochemical composition, antioxidant and anti-bacterial activity of Syzygium calophyllifolium Walp. fruit. Journal of Food Science and Technology, 2018, 55, 341-350.	1.4	15
31	Evaluation of nutritional composition and antioxidant properties of underutilized Ficus talboti King fruit for nutraceuticals and food supplements. Journal of Food Science and Technology, 2014, 51, 1260-1268.	1.4	14
32	HPLC–DAD–MS identification of polyphenols from Passiflora leschenaultii and determination of their antioxidant, analgesic, anti-inflammatory and antipyretic properties. Arabian Journal of Chemistry, 2019, 12, 760-771.	2.3	14
33	Study of anti-nociceptive, anti-inflammatory properties and phytochemical profiles of Osbeckia parvifolia Arn. (Melastomataceae). Industrial Crops and Products, 2013, 51, 360-369.	2.5	13
34	Antitumor and Wound Healing Properties of Rubus niveus Thunb. Root. Journal of Environmental Pathology, Toxicology and Oncology, 2014, 33, 145-158.	0.6	12
35	Antidiabetic and enzymatic antioxidant properties from methanol extract of Ficus talboti bark on diabetic rats induced by streptozotocin. Asian Pacific Journal of Reproduction, 2014, 3, 97-105.	0.2	12
36	Polyphenols rich Passiflora leschenaultii leaves modulating Farnesoid X Receptor and Pregnane X Receptor against paracetamol-induced hepatotoxicity in rats. Biomedicine and Pharmacotherapy, 2017, 88. 1114-1121.	2.5	12

#	Article	IF	CITATIONS
37	Chemical profiling of Pterolobium hexapetalum leaves by HPLC analysis and its productive wound healing activities in rats. Biomedicine and Pharmacotherapy, 2017, 95, 287-297.	2.5	12
38	Antioxidant potential, anti-inflammatory activity and gastroprotective mechanisms of Mallotus roxburghianus (Muell.) against ethanol-induced gastric ulcers in Wistar albino rats. Journal of Functional Foods, 2017, 36, 448-458.	1.6	12
39	Sphenodesme involucrata var. paniculata (C.B. Clarke) Munir.: Chemical characterization, anti-nociceptive and anti-inflammatory activities of methanol extract of leaves. Journal of Ethnopharmacology, 2018, 225, 71-80.	2.0	12
40	Volatile profiling and UHPLC-QqQ-MS/MS polyphenol analysis of Passiflora leschenaultii DC. fruits and its anti-radical and anti-diabetic properties. Food Research International, 2020, 133, 109202.	2.9	12
41	Study of intestinal anti-inflammatory activity of Phoenix loureiroi Kunth (Arecaceae) fruit. Biomedicine and Pharmacotherapy, 2017, 93, 156-164.	2.5	11
42	Therapeutic effects of Syzygium mundagam bark methanol extract on type-2 diabetic complications in rats. Biomedicine and Pharmacotherapy, 2017, 95, 167-174.	2.5	11
43	Evaluation of Aristolochia indica L. and Piper nigrum L. methanol extract against centipede Scolopendra moristans L. using Wistar albino rats and screening of bioactive compounds by high pressure liquid chromatography: a polyherbal formulation. Biomedicine and Pharmacotherapy, 2018, 97. 1603-1612.	2.5	11
44	Optimization of phenolic compounds extracting conditions from Ficus racemosa L. fruit using response surface method. Journal of Food Measurement and Characterization, 2019, 13, 312-320.	1.6	11
45	ANTIOXIDANT AND ANTI-INFLAMMATORY POTENTIAL OF MONOCHORIA VAGINALIS (BURM. F.) C. PRESL.: A WILD EDIBLE PLANT. Journal of Food Biochemistry, 2012, 36, 421-431.	1.2	10
46	Nutritional Composition and Antioxidant Properties of <i>Cucumis dipsaceus</i> Ehrenb. ex Spach Leaf. Scientific World Journal, The, 2013, 2013, 1-9.	0.8	10
47	Analgesic, Anti-Inflammatory, and GC-MS Studies onCastanospermum australeA. Cunn. & C. FraserexHook Scientific World Journal, The, 2014, 2014, 1-9.	0.8	10
48	Anti-oxidant, hypoglycemic and anti-hyperglycemic properties of <i>Syzygium calophyllifolium</i> . Bangladesh Journal of Pharmacology, 2015, 10, 672.	0.1	10
49	Phenolic content and antioxidant potential of <i>Sarcostigma kleinii</i> Wight. & Arn. Food and Agricultural Immunology, 2011, 22, 161-170.	0.7	9
50	Total Phenolic Content, Anti-Radical property and HPLC profiles of <i>Caralluma diffusa</i> (Wight) N.E. Br Journal of Biologically Active Products From Nature, 2014, 4, 188-195.	0.1	8
51	Bioassay Directed Isolation and Biological Evaluation of Compounds Isolated from <i>Rubus fairholmianus</i> Gard BioMed Research International, 2014, 2014, 1-15.	0.9	8
52	Cytotoxic, analgesic and anti-inflammatory properties of Syzygium calophyllifolium bark. Biomedicine and Pharmacotherapy, 2018, 103, 1079-1085.	2.5	8
53	Comparative Study of Biological (Phoenix loureiroi Fruit) and Chemical Synthesis of Chitosan-Encapsulated Zinc Oxide Nanoparticles and their Biological Properties. Arabian Journal for Science and Engineering, 2020, 45, 15-28.	1.7	8
54	Evaluation of Phenolic Content, Antioxidant Activity, and Nutritional Composition ofCordia evolutior(Clarke) Gamble. International Journal of Food Properties, 2014, 17, 226-238.	1.3	7

#	Article	IF	CITATIONS
55	Maesa indica: a nutritional wild berry rich in polyphenols with special attention to radical scavenging and inhibition of key enzymes, α-amylase and α-glucosidase. Journal of Food Science and Technology, 2016, 53, 2957-2965.	1.4	7
56	Proximate Composition Analysis. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 21-31.	0.6	7
57	Evaluation of antioxidant and pharmacological properties of Psychotria nilgiriensis Deb & gang. Food Science and Biotechnology, 2012, 21, 1421-1431.	1.2	6
58	Evaluation of nutraceutical properties of Laportea interrupta (L.) chew. Food Science and Biotechnology, 2014, 23, 577-585.	1.2	6
59	Effect of in vitro simulated digestion on sugar content and biological activities of Zehneria maysorensis (Wight & Arn.) Arn. leaf polysaccharides. Journal of Food Measurement and Characterization, 2019, 13, 1765-1772.	1.6	6
60	Total nutritional capacity and inflammation inhibition effect of Acalypha alnifolia Klein ex wild—An unexplored wild leafy vegetable. Journal of Food and Drug Analysis, 2014, 22, 439-447.	0.9	5
61	Effect of different cooking methods of <i>Hibiscus surratensis</i> L. leaf vegetable on nutritional, anti-nutritional composition, and antioxidant activities. Journal of Culinary Science and Technology, 2020, 18, 13-28.	0.6	5
62	Evaluation of Antioxidant Activity, and Nutritional and Chemical Composition of Ficus amplissima Smith Fruit. International Journal of Food Properties, 2014, 17, 454-468.	1.3	4
63	Extraction of Bioactive Compounds. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 11-13.	0.6	4
64	Syzygium mundagam bark methanol extract restores skin to normal in diabetic wounded rats. Biomedicine and Pharmacotherapy, 2017, 94, 781-786.	2.5	4
65	Antioxidant, anti-inflammatory activities and HPLC quantification of flavonoids in Pteris tripartita Sw. a critically endangered medicinal fern from India. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101304.	1.5	4
66	Canthin-6-one ameliorates TNBS-induced colitis in rats by modulating inflammation and oxidative stress. An in vivo and in silico approach. Biochemical Pharmacology, 2021, 186, 114490.	2.0	4
67	Phytochemical Constituents and Antiarthritic Activity of E hretia laevis Roxb. Journal of Food Biochemistry, 2014, 38, 433-443.	1.2	3
68	Anti-nutritional Factors. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 43-47.	0.6	3
69	Mineral Quantification. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 33-41.	0.6	2
70	Profiles of nutritional, bioactive compounds and cytotoxic activity of Dwarf date palm (Phoenix) Tj ETQq0 0 0 rgE	T /Overloc	k 10 Tf 50 1

71	Combined Effect of Vaccinium nilgiriensis Bark Extract and 680nm Laser Irradiation in Inducing Breast Cancer Cell Death. Anti-Cancer Agents in Medicinal Chemistry, 2020, 21, 207-213.	0.9	2
72	Toxicity Studies. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 81-87.	0.6	1

#	Article	IF	CITATIONS
73	Analgesic Activity. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 99-102.	0.6	1
74	Anti-inflammatory Activity. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 103-111.	0.6	1
75	Pharmacognostical Studies. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 5-10.	0.6	1
76	Exploring combined herbal extract-loaded phytoniosomes for antimalarial and antibacterial activity against methicillin-resistant Staphylococcus aureus. 3 Biotech, 2021, 11, 177.	1.1	1
77	Anti-tumour Activity. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 165-167.	0.6	1
78	Glycogen synthase kinase 3β inhibition and insulin-receptor binding enhancement of compounds isolated from wild leafy vegetable Acalypha alnifolia. Phytomedicine Plus, 2022, 2, 100216.	0.9	1
79	Antioxidant and Antivenom Potential of an Essential Oil, 4-(2-Oxo-propyl)-cyclopentane-1,3-dione, and Allantoin Derived from the Polyherbal Combination of Aristolochia indica L. and Piper nigrum L Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-20.	0.5	1
80	Toxicity and Antiulcer Properties of Ipomoea wightii (Wall.) Choisy Leaves: An In Vivo Approach Using Wistar Albino Rats. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-14.	0.5	1
81	In Vitro Anthelmintic Assay. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2016, , 79-80.	0.6	0
82	Antioxidant Effects and Suppression of Nitric Oxide Production in LPS-stimulated Macrophages by Fractions of Vaccinium leschenaultii Wight. Journal of Herbs, Spices and Medicinal Plants, 2019, 25, 414-427.	0.5	0
83	Evaluation of Antioxidant and Wound Healing Potential of Pterolobium hexapetalum (Roth.) Sant. & Wagh. : A Promising Medicinal Plant from Western Ghats, India. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-10-1.	0.0	0