
Yuefei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141741/publications.pdf Version: 2024-02-01

YUFFEL MANC

#	Article	IF	CITATIONS
1	Hydrodynamically driven self-assembly of lignin bowls and spheres by line-type micro-mixer. Chemical Engineering Science, 2022, 250, 117390.	1.9	1
2	Chirality-Dependent Copper–Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS Nano, 2022, 16, 6866-6877.	7.3	14
3	Circularly Polarized Luminescent Chiral Photonic Films Based on the Coassembly of Cellulose Nanocrystals and Gold Nanoclusters. Langmuir, 2022, 38, 4147-4155.	1.6	17
4	Self-assembly of peptide nanofibers with chirality-encoded antimicrobial activity. Journal of Colloid and Interface Science, 2022, 622, 135-146.	5.0	16
5	Chiral photonic materials self-assembled by cellulose nanocrystals. Current Opinion in Solid State and Materials Science, 2022, 26, 101017.	5.6	21
6	Colorâ€Tunable Fluorescent Hierarchical Nanoassemblies with Concentrationâ€Encoded Emission. Small, 2022, 18, .	5.2	5
7	Self-assembly of Fibonacci number spirals in amyloid-like nanofibril films. Science China Materials, 2022, 65, 3150-3156.	3.5	1
8	Control of peptide hydrogel formation and stability via heating treatment. Journal of Colloid and Interface Science, 2021, 583, 234-242.	5.0	12
9	An effective enzymatic assay for pH selectively measuring direct and total bilirubin concentration by using of CotA. Biochemical and Biophysical Research Communications, 2021, 547, 192-197.	1.0	3
10	Improved conversion efficiency of Lignin-to-Fuel conversion by limiting catalyst deactivation. Chemical Engineering Journal, 2021, 410, 128270.	6.6	22
11	Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS Nano, 2021, 15, 9827-9840.	7.3	15
12	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	2.3	5
13	Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. Nano Letters, 2021, 21, 6406-6415.	4.5	41
14	Microfluidic Synthesis of Lignin/Chitosan Nanoparticles for the pH-Responsive Delivery of Anticancer Drugs. Langmuir, 2021, 37, 7219-7226.	1.6	33
15	Colorful Pigments for Hair Dyeing Based on Enzymatic Oxidation of Tyrosine Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 34851-34864.	4.0	10
16	Highly selective reductive catalytic fractionation at atmospheric pressure without hydrogen. Green Chemistry, 2021, 23, 1648-1657.	4.6	37
17	Mineralization and Selfâ€assembly of Gold Nanoparticles using Sulfur Amino Acid Modified Hierarchically Porous Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 712-716.	0.7	2
18	Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Progress in Polymer Science, 2021, 123, 101469.	11.8	39

#	Article	IF	CITATIONS
19	Rational Design of Chiral Nanohelices from Self-Assembly of Meso-tetrakis (4-Carboxyphenyl) Porphyrin-Amino Acid Conjugates. Langmuir, 2021, 37, 13067-13074.	1.6	5
20	Bioinspired pH-Sensitive Fluorescent Peptidyl Nanoparticles for Cell Imaging. ACS Applied Materials & Interfaces, 2020, 12, 4212-4220.	4.0	19
21	Green fluorescent protein inspired fluorophores. Advances in Colloid and Interface Science, 2020, 285, 102286.	7.0	33
22	Selfâ€Assembly of Ferroceneâ€Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection. ChemPlusChem, 2020, 85, 2341-2348.	1.3	4
23	Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. ChemPlusChem, 2020, 85, 1523-1528.	1.3	3
24	Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. Langmuir, 2020, 36, 13735-13742.	1.6	3
25	Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. Langmuir, 2020, 36, 10361-10370.	1.6	7
26	Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. Journal of Colloid and Interface Science, 2020, 577, 388-396.	5.0	20
27	Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. Journal of Colloid and Interface Science, 2020, 578, 218-228.	5.0	16
28	Bioinspired Fluorescent Peptidyl Nanoparticles with Rainbow Colors. ACS Applied Materials & Interfaces, 2020, 12, 31830-31841.	4.0	14
29	Structure-tunable assembly of lignin sub-micro spheres by modifying the amphiphilic interfaces of lignin via n-alkane. European Polymer Journal, 2020, 126, 109539.	2.6	20
30	Enzyme-free visualization of nucleic acids during HIV infection by octopus-like DNA. International Journal of Biological Macromolecules, 2020, 150, 122-128.	3.6	1
31	Emergence of complexity in hierarchically organized chiral particles. Science, 2020, 368, 642-648.	6.0	179
32	High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions. Transactions of Tianjin University, 2019, 25, 118-123.	3.3	2
33	Protamineâ€induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. Journal of Peptide Science, 2019, 25, e3176.	0.8	1
34	Highly efficient production of FAMEs and β-farnesene from a two-stage biotransformation of waste cooking oils. Energy Conversion and Management, 2019, 199, 112001.	4.4	15
35	Self-assembled chiral nanoribbons studied by terahertz time-domain spectroscopy and other biological methods. Chemical Physics Letters, 2019, 717, 130-135.	1.2	0
36	Selfâ€Assembly of Ferrocene Peptides: A Nonheme Strategy to Construct a Peroxidase Mimic. Advanced Materials Interfaces, 2019, 6, 1901082.	1.9	10

#	Article	IF	CITATIONS
37	Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices. Soft Matter, 2019, 15, 4818-4826.	1.2	5
38	Facile Fabrication of Oxidized Ligninâ€Based Porous Carbon Spheres for Efficient Removal of Pb ²⁺ . ChemistrySelect, 2019, 4, 5251-5257.	0.7	6
39	<i>In situ</i> fabrication of multifunctional gold–amino acid superstructures based on self-assembly. Chemical Communications, 2019, 55, 3967-3970.	2.2	10
40	Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. Journal of Materials Chemistry B, 2019, 7, 2981-2988.	2.9	17
41	Construction of Supramolecular Nanostructures with High Catalytic Activity by Photoinduced Hierarchical Coâ€Assembly. Chemistry - A European Journal, 2019, 25, 7896-7902.	1.7	6
42	Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS Applied Materials & Interfaces, 2019, 11, 15401-15410.	4.0	15
43	Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS Nano, 2018, 12, 12305-12314.	7.3	53
44	Peptideâ€Templated Synthesis of TiO ₂ Nanofibers with Tunable Photocatalytic Activity. Chemistry - A European Journal, 2018, 24, 18123-18129.	1.7	17
45	Innentitelbild: Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo (Angew. Chem. 43/2018). Angewandte Chemie, 2018, 130, 14134-14134.	1.6	0
46	Columnar Liquid Crystals Self-Assembled by Minimalistic Peptides for Chiral Sensing and Synthesis of Ordered Mesoporous Silica. Chemistry of Materials, 2018, 30, 7902-7911.	3.2	37
47	Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 4579-4585.	1.0	20
48	Photoâ€Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferroceneâ€Tyrosine. Small, 2018, 14, e1800772.	5.2	17
49	Peptide Biomaterials: Photo-Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene-Tyrosine (Small 25/2018). Small, 2018, 14, 1870118.	5.2	1
50	Design of Silica Nanostructures with Tunable Architectures Templated by Ferrocene Peptides. ChemistrySelect, 2018, 3, 4939-4943.	0.7	7
51	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie, 2018, 130, 14228-14232.	1.6	6
52	Self-Assembled Microporous Peptide-Polysaccharide Aerogels for Oil–Water Separation. Langmuir, 2018, 34, 10732-10738.	1.6	23
53	Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 33407-33415.	4.0	103
54	Rationally Designed Peptidyl Virus‣ike Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie - International Edition, 2018, 57, 14032-14036.	7.2	41

#	Article	IF	CITATIONS
55	A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale, 2017, 9, 17561-17570.	2.8	117
56	Bioorganometallic ferrocene-tripeptide nanoemulsions. Nanoscale, 2017, 9, 15323-15331.	2.8	24
57	Capillary Flowâ€Driven, Hierarchical Chiral Selfâ€Assembly of Peptide Nanohelix Arrays. Advanced Materials Interfaces, 2017, 4, 1700514.	1.9	5
58	Reconfigurable Chiral Selfâ€Assembly of Peptides through Control of Terminal Charges. Small, 2017, 13, 1700999.	5.2	37
59	Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
60	Engineering peptide-based biomimetic enzymes for enhanced catalysis. RSC Advances, 2016, 6, 40828-40834.	1.7	2
61	Counterionâ€Directed Assembly: Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces (Adv. Mater. Interfaces 5/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
62	Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Research Letters, 2016, 11, 184.	3.1	35
63	Enzyme–substrate interactions promote the self-assembly of amino acid derivatives into supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 844-851.	2.9	17
64	Peptide Microstructures: Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelion‣ike Peptide Microstructures (Small 24/2015). Small, 2015, 11, 2830-2830.	5.2	0
65	Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures. Small, 2015, 11, 2893-2902.	5.2	31
66	Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles. Sensors, 2015, 15, 12205-12217.	2.1	77
67	Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide. Journal of the American Chemical Society, 2015, 137, 7869-7880.	6.6	170
68	Electrostatic and Aromatic Interaction-Directed Supramolecular Self-Assembly of a Designed Fmoc-Tripeptide into Helical Nanoribbons. Langmuir, 2015, 31, 2885-2894.	1.6	70
69	Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Research Letters, 2014, 9, 653.	3.1	62
70	Chemical catalysis triggered self-assembly for the bottom-up fabrication of peptide nanofibers and hydrogels. Materials Letters, 2014, 128, 216-219.	1.3	9
71	Jet flow directed supramolecular self-assembly at aqueous liquid–liquid interface. RSC Advances, 2014, 4, 15340.	1.7	19
72	Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4. Bioenergy Research, 2013, 6, 292-299.	2.2	18

#	Article	IF	CITATIONS
73	Chelate immobilization of amylase on metal ceramic powder: Preparation, characterization and application. Biochemical Engineering Journal, 2013, 77, 190-197.	1.8	23
74	Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers. Nanotechnology, 2013, 24, 465603.	1.3	46
75	Pancreatic hydrolysis of bovine casein: Peptide release and time-dependent reaction behavior. Food Chemistry, 2012, 133, 851-858.	4.2	21
76	Topologyâ€Induced Chiral Amplification and Inversion in Selfâ€Assembling Dipeptide Films. Advanced Materials Interfaces, 0, , 2102089.	1.9	3
77	Enhanced Polychromatic Luminescence of Bionic Peptidyl Nanoparticles Driven by Hydrogen Bonds. Particle and Particle Systems Characterization, 0, , 2100260.	1.2	2