List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular iodine promoted synthesis of new pyrazolo[3,4-d]pyrimidine derivatives as potential antibacterial agents. European Journal of Medicinal Chemistry, 2010, 45, 647-650.	5.5	143
2	TiO2 nanoparticles and Preyssler-type heteropoly acid modified nano-sized TiO2: A facile and efficient catalyst for the selective oxidation of sulfides to sulfones and sulfoxides. Journal of Molecular Catalysis A, 2010, 323, 59-64.	4.8	61
3	Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones. Chinese Chemical Letters, 2008, 19, 1403-1406.	9.0	57
4	Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H2SO4. Journal of Industrial and Engineering Chemistry, 2015, 25, 112-121.	5.8	51
5	Synthesis, characterization and first application of covalently immobilized nickel-porphyrin on graphene oxide for Suzuki cross-coupling reaction. New Journal of Chemistry, 2018, 42, 19433-19441.	2.8	45
6	One-pot Synthesis of Benzimidazoles and Benzothiazoles in the Presence of Fe(HSO ₄) ₃ as a New and Efficient Oxidant. Bulletin of the Korean Chemical Society, 2012, 33, 515-518.	1.9	45
7	Novel design of recyclable copper(II) complex supported on magnetic nanoparticles as active catalyst for Beckmann rearrangement in poly(ethylene glycol). Applied Organometallic Chemistry, 2018, 32, e4344.	3.5	38
8	One-pot Synthesis of 14H-dibenzo[a,j]xanthene and its 14-substituted Derivatives. Journal of Chemical Research, 2005, 2005, 277-279.	1.3	31
9	Zirconium (IV) porphyrin graphene oxide: a new and efficient catalyst for the synthesis of 3,4â€dihydropyrimidinâ€2(1H)â€ones. Applied Organometallic Chemistry, 2019, 33, e5091.	3.5	31
10	Fe(HSO ₄) ₃ as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions. Journal of the Korean Chemical Society, 2012, 56, 716-719.	0.2	28
11	Co(II)â€₽orphyrin Immobilized on Graphene Oxide: An Efficient Catalyst for the Beckmann Rearrangement. ChemistrySelect, 2019, 4, 10920-10927.	1.5	27
12	Graphene Oxide Functionalized Zn(II) Salen Complex: An Efficient and New Route for the Synthesis of 1,2,3â€Triazole Derivatives. ChemistrySelect, 2020, 5, 10233-10242.	1.5	22
13	Synthesis of Various Derivatives of [1,3]Selenazolo[4,5â€d]pyrimidine and Exploitation of These Heterocyclic Systems as Antibacterial, Antifungal, and Anticancer Agents. ChemistrySelect, 2020, 5, 10060-10066.	1.5	21
14	Synthesis of new Derivatives of Pyrimido[5,4-e][1,2,4]triazolo[3,4-b] [1,3,4]Thiadiazine and Their Enzyme Inhibitory Activity Assessment on Soybean 15-lipoxygenase. Journal of Chemical Research, 2013, 37, 48-50.	1.3	19
15	Synthesis of new derivatives of 3â€arylâ€1,5â€dimethylâ€1Hâ€{1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5â€e][1,3,4]oxadiazines as potentia agents. Journal of Heterocyclic Chemistry, 2011, 48, 183-187.	l antapsolife	erative
16	Structure and vibrational analysis of methyl 3-amino-2-butenoate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 102, 350-357.	3.9	18
17	An Alternative Regioselective Approach for the Synthesis of Highly Functionalized Derivatives of Pyrazolo[5,1â€ <i>b</i>]purine Scaffold. Journal of Heterocyclic Chemistry, 2018, 55, 2055-2060.	2.6	17
18	A magnetic copper organic framework material as an efficient and recyclable catalyst for the synthesis of 1,2,3-triazole derivatives. Scientific Reports, 2021, 11, 20514.	3.3	17

#	Article	IF	CITATIONS
19	Facile Synthesis of 2-Anilinopyrimido[4,5-e]-[1,3,4]thiadiazines. Heterocycles, 2008, 75, 1745.	0.7	16
20	Vicarious nucleophilic substitution in nitro derivatives of imidazo[1,2-a]pyridine. Mendeleev Communications, 2009, 19, 161-162.	1.6	16
21	Synthesis and antibacterial evaluations of new pyridazino[4,3â€e][1,3,4]oxadiazines. Journal of Heterocyclic Chemistry, 2011, 48, 149-152.	2.6	16
22	Synthesis and antibacterial evaluation of new heterocyclic system: [1,2,4]triazolo[3′,4′:6,1]pyridazino[4,3- <i>e</i>][1,3,4]thiadiazine. Heterocyclic Communications, 2012, 1 39-42.	8,1.2	16
23	TiCl ₂ ·2H ₂ O catalyzed one-pot synthesis of highly functionalized tetrahydropiperidines and evaluation of their antimicrobial activities. Heterocyclic Communications, 2016, 22, 117-121.	1.2	16
24	Iodine catalysed synthesis and antibacterial evaluation of thieno-[2,3-d]pyrimidine derivatives. Journal of Chemical Research, 2009, 2009, 653-655.	1.3	15
25	Dipyrimido[4,5-b:5,4-e][1,4]thiazine: synthesis and their enzyme inhibitory activity assessment on soybean 15-lipoxygenase. Journal of the Iranian Chemical Society, 2015, 12, 1501-1508.	2.2	15
26	Synthesis of New Derivatives of Pyrazolo[4,3-e][1,2,4]Triazolo[4,3-c]Pyrimidine. Journal of Chemical Research, 2015, 39, 403-406.	1.3	14
27	Synthesis of Dihydrobenzo[b]pyrimido[4,5-e][1,4]Thiazepines; Derivatives of a Novel Ring System. Journal of Chemical Research, 2015, 39, 531-534.	1.3	14
28	Synthesis, characterization and in vitro anticancer evaluations of two novel derivatives of deferasirox iron chelator. European Journal of Pharmacology, 2016, 781, 209-217.	3.5	14
29	Synthesis of Oxazolo[5,4â€ <i>d</i>][1,2,4]triazolo[4,3â€ <i>a</i>]pyrimidines as a New Class of Heterocyclic Compounds. Journal of Heterocyclic Chemistry, 2016, 53, 832-839.	2.6	14
30	Selective and mild oxidation of sulfides to sulfoxides by H2O2 using DBUH-Br3 as catalyst. Chinese Chemical Letters, 2010, 21, 651-655.	9.0	13
31	A Straightforward Approach for the Synthesis of Novel Derivatives of Benzo[b]pyrazolo[5′,1′:2,3]pyrimido[4,5â€e][1,4]thiazine. Journal of Heterocyclic Chemistry, 2016, 53, 1231-1235.	2.6	13
32	Synthesis and Anticancer Evaluation of New Derivatives of 3-Phenyl-1,5-Dimethyl-1H-[1,2,4]Triazolo[4′,3′:1,2]Pyrimido[4,5-e][1,3,4]Oxadiazine. Journal of Chemical Research, 2010, 34, 403-406.	1.3	12
33	Synthesis of pyrimido[4′,5′:2,3][1,4]thiazepino[7,6- <i>b</i>]quinolines, derivatives of a novel ring system. Heterocyclic Communications, 2014, 20, 275-279.	1.2	12
34	Synthesis, Characterisation, and in Vitro Antibacterial Evaluation of a New Class of 2-substituted-4-methyl-7,8-dihydro-5H-pyrimido[4,5-d]thiazolo[3,2-a] Pyrimidines. Journal of Chemical Research, 2016, 40, 600-603.	1.3	12
35	Onâ€Water and Efficient Ullmannâ€Type Oâ€Arylation Cross Coupling Reaction of Phenols and Aryl Tosylates in the Presence of Fe ₃ O ₄ @Starchâ€Au as Nanocatalyst. ChemistrySelect, 2021, 6, 3941-3951.	1.5	12
36	Magnetic covalently immobilized nickel complex: A new and efficient method for the Suzuki crossâ€coupling reaction. Applied Organometallic Chemistry, 2021, 35, e6158.	3.5	12

#	Article	IF	CITATIONS
37	New efficient design and synthesis of novel antioxidant and antifungal 7-imino[1,3]selenazolo[4,5-d]pyrimidine-5(4H)-thiones utilizing a base-promoted cascade addition/cyclization sequence. Monatshefte FA¼r Chemie, 2020, 151, 963-969.	1.8	12
38	Preyssler-type heteropoly acid: A new, mild and efficient catalyst for protection of carbonyl compounds. Chinese Chemical Letters, 2011, 22, 435-438.	9.0	11
39	Synthesis of Some New Pyrimido[4,5-e]Tetrazolo[5,1-b][1,3,4]Thiadiazine Derivatives via an S–N Type Smiles Rearrangement and their Antibacterial Evaluation. Journal of Chemical Research, 2016, 40, 628-632.	1.3	11
40	Synthesis, Characterization and Structure of DBU-hydrobromide-perbromide: A Novel Oxidizing Agent for Selective Oxidation of Alcohols to Carbonyl Compounds. Bulletin of the Korean Chemical Society, 2010, 31, 949-952.	1.9	11
41	Synthesis of New Derivatives of Pyridazino[6,1-c]Pyrimido[5,4-e][1,2,4]Triazine; a Novel Heterocyclic System. Journal of Chemical Research, 2016, 40, 44-46.	1.3	10
42	Step Forward to Stronger Neutral Organic Superbases: Fused Troponimines. Journal of Organic Chemistry, 2020, 85, 11375-11381.	3.2	10
43	Robust approach leading to novel densely functionalized four-cyclic benzo[e]pyrazolo[5′,1′:2,3]pyrimido[4,5-b][1,4]diazepines with antibacterial activity toward resistant strains. Journal of the Iranian Chemical Society, 2020, 17, 1555-1566.	2.2	10
44	Thiazolo[4,5-d]pyrimidines: synthesis and antibacterial evaluation. Heterocyclic Communications, 2011, 17, .	1.2	9
45	Inhibitive assessment of 1-(7-methyl-5-morpholin-4-yl-thiazolo[4,5-d]pyrimidin-2-yl)-hydrazine as a corrosion inhibitor for mild steel in sulfuric acid solution. Journal of the Iranian Chemical Society, 2013, 10, 831-839.	2.2	9
46	Synthesis, characterization and application of nitrogen–sulfur-doped carbon spheres as an efficient catalyst for the preparation of novel α-aminophosphonates. Journal of the Iranian Chemical Society, 2017, 14, 1971-1982.	2.2	9
47	lodine-Catalyzed Synthesis of Spiroorthcarbonates under Neutral Conditions. Bulletin of the Korean Chemical Society, 2009, 30, 1699-1700.	1.9	9
48	An efficient and green one-pot synthesis of tetrahydrobenzo[a]xanthenes, 1,8-dioxo-octahydroxanthenes and dibenzo[a,j]xanthenes by Fe3O4@Agar-Ag as nanocatalyst. Molecular Diversity, 2022, 26, 2745-2759.	3.9	9
49	Pyrimidooxadiazine and triazolopyrimidooxadiazine derivatives: Synthesis and cytotoxic evaluation in human cancer cell lines. Russian Journal of Bioorganic Chemistry, 2015, 41, 201-208.	1.0	8
50	Synthesis of New Derivatives of 4â€(4,7,7â€Trimethylâ€7,8â€dihydroâ€6 <i>H</i> â€benzo[<i>b</i>]pyrimido[5,4â€ <i>e</i>][1,4]thiazinâ€2â€ Journal of Heterocyclic Chemistry, 2017, 54, 151-154.	yl)n zos pho	linæ
51	Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture. Molecular Diversity, 2022, 26, 923-937.	3.9	8
52	Synthesis and mass spectral fragmentations of new spiro heterocycles. Chinese Chemical Letters, 2007, 18, 689-693.	9.0	7
53	Synthesis, characterization and theoretical evaluations of HMDS promoted chemoselective O-alkylation of uracils. Tetrahedron, 2013, 69, 8470-8476.	1.9	7
54	Nano-sized NiLa2O4 spinel–NaBH4-mediated reduction of imines to secondary amines. Chinese Journal of Catalysis, 2015, 36, 1191-1196.	14.0	7

#	Article	IF	CITATIONS
55	Synthesis and Density Functional Theory Study of [1,2,3]Triazolo[4,5-d][1,2,4] Triazolo[4,3-a]Pyrimidine Derivatives: A Novel Heterocyclic System. Journal of Chemical Research, 2016, 40, 633-636.	1.3	7
56	Synthesis of New Pyrimido[4,5â€e][1,2,4]triazolo[3,4â€b][1,3,4]thiadiazine Derivatives via S/N Smiles Rearrangement. Journal of Heterocyclic Chemistry, 2017, 54, 235-241.	2.6	7
57	Substituted troponimines: when aromatization of the conjugate acid leads to very strong neutral organic superbases. New Journal of Chemistry, 2018, 42, 14568-14575.	2.8	7
58	Copper Immobilization on Fe3O4@Agar: An Efficient Superparamagnetic Nanocatalyst for Green Ullmann-Type Cross-Coupling Reaction of Primary and Secondary Amines with Aryl Iodide Derivatives. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4648-4658.	3.7	7
59	A general synthesis of pyridazino[4,3- <i>e</i>][1,3,4]thiadiazines. Journal of Sulfur Chemistry, 2007, 28, 613-616.	2.0	6
60	Synthesis, characterization and application of nano-sized Co2CrO4 spinel catalyst for selective oxidation of sulfides to sulfoxides. Materials Research Bulletin, 2012, 47, 413-418.	5.2	6
61	Synthesis of [1,2,4]Triazolo[4″,3″:1′,6′]Pyrimido[4′,5′:3,4]Pyridazino[1,6-D] [1,2,4]Triazine; A System. Journal of Chemical Research, 2015, 39, 148-153.	Novel Tetr 1.3	acyclic
62	Synthesis and Spectral Characteristics of Novel Fluorescent Dyes Based on Pyrimido[4,5â€ <i>d</i>] [1,2,4]triazolo[4,3â€ <i>a</i>]pyrimidine. Helvetica Chimica Acta, 2015, 98, 474-	481 <mark>.</mark> 6	6
63	Synthesis and evaluation of cytotoxicity of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles. Russian Journal of Bioorganic Chemistry, 2016, 42, 316-322.	1.0	6
64	Synthesis, X-ray and Fluorescence Characteristics of Pyrimido[5,4-e]thiazolo[3,2-a]pyrimidine as a Novel Heterocyclic System. Journal of Fluorescence, 2017, 27, 1183-1190.	2.5	6
65	Synthesis of Novel Derivatives of (Benz)Imidazo[2,1- <i>b</i>]Pyrimido[4,5- <i>d</i>][1,3]Thiazine. Journal of Chemical Research, 2017, 41, 730-733.	1.3	6
66	A Dimroth rearrangement approach for the synthesis of selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines with cytotoxic activity on breast cancer cells. Molecular Diversity, 2022, 26, 1621-1633.	3.9	6
67	A core–shell superparamagnetic metal–organic framework: a recyclable and green catalyst for the synthesis of propargylamines. New Journal of Chemistry, 2021, 45, 21342-21349.	2.8	6
68	Synthesis of [1,2,4]Triazolo[3,4-b]Pteridines as a Novel Class of Heterocyclic Compounds. Journal of Chemical Research, 2015, 39, 216-219.	1.3	5
69	Synthesis of Some Derivatives of Pyrimido[5,4-e]Tetrazolo[5,1-c][1,2,4]triazine; a Novel Heterocyclic System. Journal of Chemical Research, 2015, 39, 609-611.	1.3	5
70	Synthesis and Antioxidant Evaluation of Quinoxalino[2′,3′:5,6][1,3,4]thiadiazino[2,3â€ <i>b</i>]quinazolinâ€15â€ones: Derivatives of a Novel Rir Journal of Heterocyclic Chemistry, 2018, 55, 517-521.	ng S yst em.	5
71	Pyrido[1,2- <i>e</i>]purine: Design and Synthesis of Appropriate Inhibitory Candidates against the Main Protease of COVID-19. Journal of Organic Chemistry, 2022, 87, 3922-3933.	3.2	5
72	Pure Water-Induced Dehalogenation of 2,4-Di- <i>tert</i> -amino-6-substituted-5-halogenopyrimidines. ACS Sustainable Chemistry and Engineering, 2018, 6, 5852-5857.	6.7	4

#	Article	IF	CITATIONS
73	Novel Tricyclic 2-Alkoxy-8-methyl-6-(pyrrolidin-1-yl)-4H-[1,2,4]triazolo[5,1-f]purine Derivatives: Synthesis and Characterization. Polycyclic Aromatic Compounds, 2020, , 1-11.	2.6	4
74	3,3,9,9-Tetramethyl-1,5,7,11-tetraoxaspiro[5.5]undecane as a reagent for protection of carbonyl compounds. Journal of Chemical Research, 2008, 2008, 704-706.	1.3	3
75	Synthesis, Characterization, and Docking Evaluations of New Derivatives of Pyrimido[4,5â€ <i>c</i>]pyridazine as Potential Human AKT1 Inhibitors. Journal of Heterocyclic Chemistry, 2016, 53, 135-143.	2.6	3
76	P ₂ O ₅ /SiO ₂ as an Efficient and Mild Catalyst for Trimethylsilylation of Alcohols Using Hexamethyldisilazane. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1435-1439.	0.6	2
77	Synthesis and Antiproliferative Evaluation of New Pyrimido[1,6â€ <i>a</i>]Thieno[2,3â€ <i>d</i>]Pyrimidine Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 366-374.	2.6	2
78	NANO-SIZED La0.5Ca0.5CoO3-MEDIATED REDUCTION BY NaBH4 OF ARYL NITRILES TO BIS-(BENZYL) AMINES. Journal of the Chilean Chemical Society, 2017, 62, 3330-3334.	1.2	2
79	Synthesis of 2-substituted-4-methyl-5,13-dihydropyrimido[4′,5′:5,6][1,4]thiazepino[2,3- <i>b</i>]quinoxalinas a new heterocyclic system. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 545-551.	e 1.6	2
80	Synthesis of Pyrimido[4,5-e]tetrazolo[5,1-b][1,3,4]thiadiazepine as a Novel Fused Heterocyclic System. Polycyclic Aromatic Compounds, 2020, 40, 535-539.	2.6	2
81	Synthesis of 14-Aryl-14H-7-thiadibenzo[a,j]anthracene. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 2443-2449.	1.6	1
82	Synthesis and evaluation of antibacterial activity of new derivatives of pyrimido[4,5-e][1,3,4]oxadiazine. Heterocyclic Communications, 2011, 17, .	1.2	1
83	Alternative Route for the Synthesis of New Derivatives of Benzimidazo[2′,1′:2,3] thiazolo[5,4-d]pyrimidine. Journal of Chemical Research, 2015, 39, 539-541.	1.3	1
84	The effect of solvation in torquoselectivity: ring opening of monosubstituted cyclobutenes. Organic and Biomolecular Chemistry, 2020, 18, 6287-6296.	2.8	1
85	Synthesis and Characterization of Various Novel Derivatives of Dipyrimido[4,5-b:4',5'-e][1,4]thiazepine and Their Theoretical Evaluation as 15-Lipoxygenase Inhibitor. Polycyclic Aromatic Compounds, 2023, 43, 288-301.	2.6	1
86	Natural halloysite nanotubes as an efficient catalyst in strecker reaction: the synthesis of α-amino nitriles under solvent-free conditions. Molecular Diversity, 2023, 27, 919-929.	3.9	1
87	Microwave-assisted synthesis and antibacterial evaluation of new derivatives of 1,2-dihydro-3 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-3-one. Heterocyclic Communications, 2016, 22, 49-53.	1.2	0
88	Metalâ€Free Debromination of 5â€Bromopyrimidine Derivatives Using DMF/Trialkylamine as the Hydrogen Source. ChemistrySelect, 2018, 3, 5401-5404.	1.5	0
89	Synthesis and antiproliferative assessments of new derivatives of isothiazolo[3,4-d]pyrimidine. Journal of Sulfur Chemistry, 2021, 42, 193-201.	2.0	0