
Ling Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal processing of starch-based polymers. Progress in Polymer Science, 2009, 34, 1348-1368.	11.8	639
2	Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymers, 2016, 147, 146-154.	5.1	301
3	Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers, 2006, 65, 357-363.	5.1	260
4	Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocolloids, 2013, 31, 68-73.	5.6	246
5	Thermal degradation and stability of starch under different processing conditions. Starch/Staerke, 2013, 65, 48-60.	1.1	240
6	Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2009, 49, 371-377.	1.8	211
7	Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids, 2012, 29, 116-122.	5.6	195
8	Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 2015, 50, 228-236.	5.6	176
9	Insights into the multi-scale structure and digestibility of heat-moisture treated rice starch. Food Chemistry, 2018, 242, 323-329.	4.2	175
10	Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering, 2019, 244, 150-158.	2.7	168
11	One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chemical Engineering Journal, 2017, 309, 607-616.	6.6	158
12	Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydrate Polymers, 2012, 87, 1583-1588.	5.1	153
13	Starch-based antimicrobial films functionalized by pomegranate peel. International Journal of Biological Macromolecules, 2019, 129, 1120-1126.	3.6	147
14	Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Staerke, 2010, 62, 139-146.	1.1	146
15	Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends in Food Science and Technology, 2021, 109, 154-168.	7.8	128
16	Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Food and Function, 2017, 8, 720-730.	2.1	118
17	Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment. Food Chemistry, 2019, 271, 102-108.	4.2	117
18	Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch. Carbohydrate Polymers, 2017, 161, 286-294.	5.1	115

#	Article	IF	CITATIONS
19	Starch Modification Using Reactive Extrusion. Starch/Staerke, 2006, 58, 131-139.	1.1	112
20	In situ thermal decomposition of starch with constant moisture in a sealed system. Polymer Degradation and Stability, 2008, 93, 260-262.	2.7	110
21	Understanding the structure and digestibility of heat-moisture treated starch. International Journal of Biological Macromolecules, 2016, 88, 1-8.	3.6	108
22	Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends in Food Science and Technology, 2020, 103, 109-117.	7.8	103
23	Structure and enzymatic resistivity of debranched high temperature–pressure treated high-amylose corn starch. Journal of Cereal Science, 2013, 57, 348-355.	1.8	92
24	lonic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chemistry, 2018, 20, 4169-4200.	4.6	89
25	Understanding the digestibility of rice starch-gallic acid complexes formed by high pressure homogenization. International Journal of Biological Macromolecules, 2019, 134, 856-863.	3.6	89
26	Glass transition temperature of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2010, 51, 388-391.	1.8	86
27	Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocolloids, 2014, 37, 69-76.	5.6	86
28	Dry heating and annealing treatment synergistically modulate starch structure and digestibility. International Journal of Biological Macromolecules, 2019, 137, 554-561.	3.6	86
29	Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 2020, 63, 104868.	3.8	85
30	Thermal Decomposition of Corn Starch with Different Amylose/Amylopectin Ratios in Open and Sealed Systems. Cereal Chemistry, 2009, 86, 383-385.	1.1	84
31	Phase transition of starch granules observed by microscope under shearless and shear conditions. Carbohydrate Polymers, 2007, 68, 495-501.	5.1	83
32	Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose cornstarches. Innovative Food Science and Emerging Technologies, 2015, 30, 198-207.	2.7	81
33	Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing. Food Hydrocolloids, 2020, 105, 105812.	5.6	81
34	Studies on nutritional intervention of rice starch- oleic acid complex (resistant starch type V) in rats fed by high-fat diet. Carbohydrate Polymers, 2020, 246, 116637.	5.1	79
35	Understanding the structural disorganization of starch in water–ionic liquid solutions. Physical Chemistry Chemical Physics, 2015, 17, 13860-13871.	1.3	73
36	Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract. Carbohydrate Polymers, 2017, 171, 242-251.	5.1	73

#	Article	IF	CITATIONS
37	Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch. International Journal of Biological Macromolecules, 2017, 102, 162-169.	3.6	69
38	Improving the in vitro digestibility of rice starch by thermomechanically assisted complexation with guar gum. Food Hydrocolloids, 2020, 102, 105637.	5.6	69
39	Superhydrophobic Modification on Starch Film Using PDMS and Ball-Milled MMT Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 10423-10430.	3.2	67
40	Rheological properties and phase transition of starch under shear stress. Food Hydrocolloids, 2008, 22, 973-978.	5.6	66
41	Reinforcement of Calcium Phosphate Cement by Bio-Mineralized Carbon Nanotube. Journal of the American Ceramic Society, 2007, 90, 962-964.	1.9	65
42	Supramolecular structural changes of waxy and high-amylose cornstarches heated in abundant water. Food Hydrocolloids, 2014, 35, 700-709.	5.6	63
43	Digestibility and structural changes of waxy rice starch during the fermentation process for waxy rice vinasse. Food Hydrocolloids, 2016, 57, 38-45.	5.6	61
44	Facile Preparation of Starch-Based Electroconductive Films with Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2017, 5, 5457-5467.	3.2	58
45	Improvement in Nutritional Attributes of Rice Starch with Dodecyl Gallate Complexation: A Molecular Dynamic Simulation and in Vitro Study. Journal of Agricultural and Food Chemistry, 2018, 66, 9282-9290.	2.4	58
46	Morphology and Microstructure of Maize Starches with Different Amylose/Amylopectin Content. Starch/Staerke, 2006, 58, 611-615.	1.1	57
47	Preparation and characterization of starchâ€based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science, 2017, 134, 45159.	1.3	55
48	Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Food Chemistry, 2021, 342, 128362.	4.2	54
49	Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydrate Polymers, 2018, 191, 242-254.	5.1	53
50	Multi-scale structural and digestion resistibility changes of high-amylose corn starch after hydrothermal-pressure treatment at different gelatinizing temperatures. Food Research International, 2013, 53, 456-463.	2.9	52
51	Preparation and Characterization of Glycoprotein-Resistant Starch Complex As a Coating Material for Oral Bioadhesive Microparticles for Colon-Targeted Polypeptide Delivery. Journal of Agricultural and Food Chemistry, 2015, 63, 4138-4147.	2.4	52
52	Solubility of starch and microcrystalline cellulose in 1-ethyl-3-methylimidazolium acetate ionic liquid and solution rheological properties. Physical Chemistry Chemical Physics, 2016, 18, 27584-27593.	1.3	51
53	Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites. Carbohydrate Polymers, 2016, 154, 186-193.	5.1	51
54	Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo. Food Chemistry, 2020, 310, 125979.	4.2	50

#	Article	IF	CITATIONS
55	Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polymers, 2016, 146, 67-79.	5.1	49
56	Understanding the effect of freeze-drying on microstructures of starch hydrogels. Food Hydrocolloids, 2020, 101, 105509.	5.6	47
57	Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocolloids, 2017, 72, 331-337.	5.6	46
58	Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents. Carbohydrate Polymers, 2016, 144, 271-281.	5.1	45
59	Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohydrate Polymers, 2019, 215, 151-159.	5.1	45
60	Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules, 2020, 25, 351.	1.7	45
61	Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties. Carbohydrate Polymers, 2016, 150, 269-277.	5.1	44
62	Understanding the structural features of high-amylose maize starch through hydrothermal treatment. International Journal of Biological Macromolecules, 2016, 84, 268-274.	3.6	44
63	Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. International Journal of Biological Macromolecules, 2019, 124, 314-320.	3.6	44
64	In vitro digestibility and structural control of rice starch-unsaturated fatty acid complexes by high-pressure homogenization. Carbohydrate Polymers, 2021, 256, 117607.	5.1	44
65	Printability improvement of rice starch gel via catechin and procyanidin in hot extrusion 3D printing. Food Hydrocolloids, 2021, 121, 106997.	5.6	44
66	Synergistic effect of extrusion and polyphenol molecular interaction on the short/long-term retrogradation properties of chestnut starch. Carbohydrate Polymers, 2022, 276, 118731.	5.1	44
67	Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment. Food Research International, 2020, 137, 109612.	2.9	43
68	Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers, 2021, 253, 117277.	5.1	43
69	Rheological properties and phase transition of cornstarches with different amylose/amylopectin ratios under shear stress. Starch/Staerke, 2010, 62, 667-675.	1.1	42
70	Supramolecular structure and thermal behavior of cassava starch treated by oxygen and helium glow-plasmas. Innovative Food Science and Emerging Technologies, 2016, 34, 336-343.	2.7	41
71	Effects of amylose and phosphate monoester on aggregation structures of heat-moisture treated potato starches. Carbohydrate Polymers, 2014, 103, 228-233.	5.1	40
72	Further insights into the evolution of starch assembly during retrogradation using SAXS. International Journal of Biological Macromolecules, 2020, 154, 521-527.	3.6	40

#	Article	IF	CITATIONS
73	Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. Carbohydrate Polymers, 2020, 229, 115481.	5.1	39
74	Effect of pre-printing gelatinization degree on the structure and digestibility of hot-extrusion 3D-printed starch. Food Hydrocolloids, 2022, 124, 107210.	5.6	37
75	Structural changes and triacetin migration of starch acetate film contacting with distilled water as food simulant. Carbohydrate Polymers, 2014, 104, 1-7.	5.1	36
76	Tunable <scp>d</scp> -Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals. Journal of Agricultural and Food Chemistry, 2018, 66, 979-987.	2.4	36
77	Preparation and characterization of edible starch film reinforced by laver. International Journal of Biological Macromolecules, 2019, 129, 944-951.	3.6	36
78	Thermal-oxidative degradation of high-amylose corn starch. Journal of Thermal Analysis and Calorimetry, 2014, 115, 659-665.	2.0	35
79	Synergistic effect of hydrothermal treatment and lauric acid complexation under different pressure on starch assembly and digestion behaviors. Food Chemistry, 2019, 278, 560-567.	4.2	35
80	How rheological behaviors of concentrated starch affect graft copolymerization of acrylamide and resultant hydrogel. Carbohydrate Polymers, 2019, 219, 395-404.	5.1	34
81	Digestibility and structure changes of rice starch following co-fermentation of yeast and Lactobacillus strains. International Journal of Biological Macromolecules, 2021, 184, 530-537.	3.6	33
82	Rheological and gel properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Colloid and Polymer Science, 2015, 293, 229-237.	1.0	32
83	Understanding the digestibility and nutritional functions of rice starch subjected to heat-moisture treatment. Journal of Functional Foods, 2018, 45, 165-172.	1.6	32
84	New insights into how starch structure synergistically affects the starch digestibility, texture, and flavor quality of rice noodles. International Journal of Biological Macromolecules, 2021, 184, 731-738.	3.6	32
85	Nobiletin Delays Aging and Enhances Stress Resistance of Caenorhabditis elegans. International Journal of Molecular Sciences, 2020, 21, 341.	1.8	31
86	Effect of starch-catechin interaction on regulation of starch digestibility during hot-extrusion 3D printing: Structural analysis and simulation study. Food Chemistry, 2022, 393, 133394.	4.2	31
87	Study on crystalline, gelatinization and rheological properties of japonica rice flour as affected by starch fine structure. International Journal of Biological Macromolecules, 2020, 148, 1232-1241.	3.6	30
88	Effect of growth period on the multi-scale structure and physicochemical properties of cassava starch. International Journal of Biological Macromolecules, 2017, 101, 9-15.	3.6	29
89	Insights on the structure and digestibility of sweet potato starch: Effect of postharvest storage of sweet potato roots. International Journal of Biological Macromolecules, 2020, 145, 694-700.	3.6	29
90	Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films. International Journal of Biological Macromolecules, 2017, 104, 1330-1337.	3.6	29

#	Article	IF	CITATIONS
91	Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Frontiers in Microbiology, 2020, 11, 599739.	1.5	28
92	Effect of stearic acid on the microstructural, rheological and 3D printing characteristics of rice starch. International Journal of Biological Macromolecules, 2021, 189, 590-596.	3.6	27
93	Modulation of the digestibility and multi-scale structure of cassava starch by controlling the cassava growth period. International Journal of Biological Macromolecules, 2018, 120, 346-353.	3.6	26
94	Effect of starch microstructure on microwave-assisted esterification. International Journal of Biological Macromolecules, 2020, 164, 2550-2557.	3.6	26
95	Rheokinetics of graft copolymerization of acrylamide in concentrated starch and rheological behaviors and microstructures of reaction products. Carbohydrate Polymers, 2018, 192, 1-9.	5.1	25
96	Starch modification using a twinâ€roll mixer as a reactor. Starch/Staerke, 2012, 64, 821-825.	1.1	23
97	Formation and Control of the Viable but Non-culturable State of Foodborne Pathogen Escherichia coli O157:H7. Frontiers in Microbiology, 2020, 11, 1202.	1.5	23
98	Effect of the addition of modified starch on gelatinization and gelation properties of rice flour. International Journal of Biological Macromolecules, 2020, 153, 26-35.	3.6	23
99	Anchor and bridge functions of APTES layer on interface between hydrophilic starch films and hydrophobic soyabean oil coating. Carbohydrate Polymers, 2021, 272, 118450.	5.1	23
100	Understanding the multi-scale structure and digestibility of different waxy maize starches. International Journal of Biological Macromolecules, 2020, 144, 252-258.	3.6	21
101	An insight into the structural evolution of waxy maize starch chains during growth based on nonlinear rheology. Food Hydrocolloids, 2021, 116, 106655.	5.6	21
102	Starch-Based Foams Nucleated and Reinforced by Polysaccharide-Based Crystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 2169-2179.	3.2	21
103	Comparative Study of Phenolic Profiles, Antioxidant and Antiproliferative Activities in Different Vegetative Parts of Ramie (Boehmeria nivea L.). Molecules, 2019, 24, 1551.	1.7	20
104	Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocolloids, 2022, 127, 107538.	5.6	19
105	Control of starch–lipid interactions on starch digestibility during hot-extrusion 3D printing for starchy foods. Food and Function, 2022, 13, 5317-5326.	2.1	19
106	Tailoring assembly behavior of starches to control insulin release from layer-by-layer assembled colloidal particles. International Journal of Biological Macromolecules, 2020, 160, 531-537.	3.6	18
107	Manipulation of the internal structure of starch by propionyl treatment and its diverse influence on digestion and in vitro fermentation characteristics. Carbohydrate Polymers, 2021, 270, 118390.	5.1	18
108	Spoilage Lactic Acid Bacteria in the Brewing Industry. Journal of Microbiology and Biotechnology, 2020, 30, 955-961.	0.9	18

#	Article	IF	CITATIONS
109	Spermine modified starch-based carrier for gene delivery: Structure-transfection activity relationships. Carbohydrate Polymers, 2017, 173, 690-700.	5.1	17
110	The effects of molecular fine structure on rice starch granule gelatinization dynamics as investigated by in situ small-angle X-ray scattering. Food Hydrocolloids, 2021, 121, 107014.	5.6	17
111	Starch concentration is an important factor for controlling its digestibility during hot-extrusion 3D printing. Food Chemistry, 2022, 379, 132180.	4.2	17
112	A novel oral colon-targeting drug delivery system based on resistant starch acetate. Journal of Controlled Release, 2011, 152, e51-e52.	4.8	16
113	Investigating the H2O/O2 selective permeability from a view of multi-scale structure of starch/SiO2 nanocomposites. Carbohydrate Polymers, 2017, 173, 143-149.	5.1	16
114	Carriers Based on Zein-Dextran Sulfate Sodium Binary Complex for the Sustained Delivery of Quercetin. Frontiers in Chemistry, 2020, 8, 662.	1.8	16
115	Comparison of phenolics, antioxidant, and antiproliferative activities of two <i>Hypsizygus marmoreus</i> varieties. Journal of Food Science, 2020, 85, 2227-2235.	1.5	16
116	Plasticization Efficiency and Characteristics of Monosaccharides, Disaccharides, and Low-Molecular-Weight Polysaccharides for Starch-Based Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 11960-11969.	3.2	16
117	Development changes in multi-scale structure and functional properties of waxy corn starch at different stages of kernel growth. International Journal of Biological Macromolecules, 2021, 191, 335-343.	3.6	16
118	3D-printing of oxidized starch-based hydrogels with superior hydration properties. Carbohydrate Polymers, 2022, 292, 119686.	5.1	15
119	Progress in tailoring starch intrinsic structures to improve its nutritional value. Food Hydrocolloids, 2021, 113, 106447.	5.6	14
120	Regulation nature of water-choline amino acid ionic liquid mixtures on the disaggregation behavior of starch. Carbohydrate Polymers, 2021, 272, 118474.	5.1	14
121	Development and Application of a Simple "Easy To Operate―Propidium Monoazide-Crossing Priming Amplification on Detection of Viable and Viable But Non-culturable Cells of O157 Escherichia coli. Frontiers in Microbiology, 2020, 11, 569105.	1.5	12
122	Impact of protein network restructured with soy protein and transglutaminase on the structural and functional characteristics of whole-grain highland barley noodle. Food Hydrocolloids, 2022, 133, 107909.	5.6	12
123	Characterization of regenerated starch from 1â€ethylâ€3â€methylimidazolium acetate ionic liquid with different antiâ€solvents. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1231-1238.	2.4	11
124	Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Frontiers in Microbiology, 2021, 12, 634555.	1.5	10
125	Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiology, 2021, 98, 103785.	2.1	10
126	Designing and application of reactive extrusion with twice initiations for graft copolymerization of acrylamide on starch. European Polymer Journal, 2022, 165, 111008.	2.6	10

#	Article	IF	CITATIONS
127	First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Frontiers in Microbiology, 2020, 11, 615875.	1.5	9
128	Influence of Moisture Content on Starch Esterification by Solventâ€Free Method. Starch/Staerke, 2021, 73, 2100009.	1.1	9
129	Developing Edible Starch Film Used for Packaging Seasonings in Instant Noodles. Foods, 2021, 10, 3105.	1.9	9
130	Reduction, Prevention, and Control of Salmonella enterica Viable but Non-culturable Cells in Flour Food. Frontiers in Microbiology, 2020, 11, 1859.	1.5	7
131	Integrated Transcriptomic and Metabolic Framework for Carbon Metabolism and Plant Hormones Regulation in Vigna radiata during Post-Germination Seedling Growth. Scientific Reports, 2020, 10, 3745.	1.6	7
132	Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. Microbial Pathogenesis, 2020, 145, 104186.	1.3	7
133	Cationic starch/pDNA nanocomplexes assembly and their nanostructure changes on gene transfection efficiency. Scientific Reports, 2017, 7, 14844.	1.6	5
134	Effect of Environmental Conditions on the Formation of the Viable but Nonculturable State of Pediococcus acidilactici BM-PA17927 and Its Control and Detection in Food System. Frontiers in Microbiology, 2020, 11, 586777.	1.5	5
135	Study on the virulome and resistome of a vancomycin intermediate-resistance Staphylococcus aureus. Microbial Pathogenesis, 2020, 145, 104187.	1.3	5
136	Pathogenic and Virulence Factor Detection on Viable but Non-culturable Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 630053.	1.5	5
137	"One-step―characterization platform for pathogenic genetics of Staphylococcus aureus. Bioprocess and Biosystems Engineering, 2021, 44, 985-994.	1.7	4
138	Evolution of microstructures and hydrogen bond interactions within choline amino acid ionic liquid and water mixtures. Physical Chemistry Chemical Physics, 2022, 24, 17792-17808.	1.3	4
139	Supramolecular structural evolutions of maize starch hydrothermally treated in excess water. Starch/Staerke, 2016, 68, 365-373.	1.1	3
140	Development of a Direct and Rapid Detection Method for Viable but Non-culturable State of Pediococcus acidilactici. Frontiers in Microbiology, 2021, 12, 687691.	1.5	3
141	Quantum Dots Encapsulated by ZrO ₂ Enhance the Stability of Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100776.	1.9	3
142	Impact of kernel development on phenolic profiles and antioxidant activity in <i>Castanea henryi</i> . International Journal of Food Science and Technology, 2022, 57, 5801-5810.	1.3	2
143	Resistome and virulome study on pathogenic Streptococcus agalactiae Guangzhou-SAG036. Microbial Pathogenesis, 2020, 147, 104258.	1.3	1
144	Letter to the Editor: Four Novel Types of Gene Cassettes from Carbapenem-Resistant Pseudomonas aeruginosa in Southern China—First Report of qnrVC7. Microbial Drug Resistance, 2021, 27, 1011-1012.	0.9	1

#	Article	IF	CITATIONS
145	Vitamin E and carotenoid accumulation during kernel development in two varieties of <i>Castanea henryi</i> . International Journal of Food Science and Technology, 2021, 56, 6539-6548.	1.3	1
146	High-flux simultaneous screening of common foodborne pathogens and their virulent factors. Bioprocess and Biosystems Engineering, 2020, 43, 693-700.	1.7	0
147	Effect of InGaN Channel on Radioâ€Frequency Performance in Highâ€Electronâ€Mobility Transistors with an InAlGaN Barrier. Physica Status Solidi (A) Applications and Materials Science, 0, , 2200024.	0.8	0