Veselin Maslak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5141088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. Journal of Hazardous Materials, 2022, 434, 128900.	12.4	20
2	Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. Chemosphere, 2021, 275, 130005.	8.2	42
3	Selective formation of dihydrofuran fused [60] fullerene derivatives by TEMPO mediated [3 + 2] cycloaddition of medium chain β-keto esters to C ₆₀ . RSC Advances, 2021, 11, 29426-29432.	3.6	2
4	Thermal properties of 3â€hydroxy fatty acids and their binary mixtures as phase change energy storage materials. International Journal of Energy Research, 2020, 44, 1294-1302.	4.5	7
5	Discovery and Biochemical Characterization of a Novel Polyesterase for the Degradation of Synthetic Plastics. , 2020, 2, .		1
6	Cycloaddition Reactions of Azomethine Ylides and 1,3-Dienes on the <i>C</i> _{2v} -Symmetrical Pentakisadduct of C ₆₀ . Journal of Organic Chemistry, 2018, 83, 2166-2172.	3.2	2
7	Excited-State Hydroxide Ion Release From a Series of Acridinol Photobases. Journal of Physical Chemistry A, 2017, 121, 448-457.	2.5	11
8	Improved Flavin-Based Catalytic Photooxidation of Alcohols through Intersystem Crossing Rate Enhancement. Journal of Physical Chemistry A, 2016, 120, 7294-7300.	2.5	35
9	Synthesis and characterization of highly ordered self-assembled bioactive fulleropeptides. Journal of Materials Science, 2016, 51, 739-747.	3.7	5
10	Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Applied Microbiology and Biotechnology, 2016, 100, 161-172.	3.6	50
11	Importance of the N-terminal proline for the promiscuous activity of 4-oxalocrotonate tautomerase (4-OT). Journal of the Serbian Chemical Society, 2016, 81, 871-881.	0.8	1
12	The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides. Journal of Biotechnology, 2015, 204, 7-12.	3.8	15
13	Study of the intramolecular Heck reaction: synthesis of the bicyclic core of corialstonidine. Tetrahedron Letters, 2015, 56, 2529-2532.	1.4	5
14	Fulleropyrrolidine molecular dumbbells act as multi-electron-acceptor triads. Spectroscopic, electrochemical, computational and morphological characterizations. RSC Advances, 2015, 5, 88241-88248.	3.6	7
15	Application of permeable materials for CBRN protective equipment. Materials Protection, 2015, 56, 239-242.	0.9	6
16	Synthesis of γ-nitroaldehydes containing quaternary carbon in the α-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst. RSC Advances, 2014, 4, 60502-60510.	3.6	3
17	Electrochemical, theoretical, and morphological studies of antioxidant fullerosteroids. Monatshefte Für Chemie, 2014, 145, 1715-1725.	1.8	7
18	A microwave approach to the synthesis of certain 4-substituted phenyl-6-phenyl-3-cyano-2-pyridones. Journal of the Serbian Chemical Society, 2014, 79, 759-765.	0.8	7

VESELIN MASLAK

#	Article	IF	CITATIONS
19	Chemoselective biocatalytic reduction of conjugated nitroalkenes: New application for an Escherichia coli BL21(DE3) expression strain. Enzyme and Microbial Technology, 2014, 60, 16-23.	3.2	5
20	Indirect N-vinylation of indoles via isomerisation of N-allyl derivatives: synthesis of (±)-debromoarborescidine B. Tetrahedron Letters, 2013, 54, 4536-4539.	1.4	10
21	Assembly of Amphiphilic Baskets into Stimuli-Responsive Vesicles. Developing a Strategy for the Detection of Organophosphorus Chemical Nerve Agents. Journal of the American Chemical Society, 2013, 135, 14964-14967.	13.7	63
22	Highly efficient Michael-type addition of acetaldehyde to β-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. Bioresource Technology, 2013, 142, 462-468.	9.6	22
23	Expanding the scope of the indium-promoted allylation reaction: 4-(bromomethyl)-1,3-dioxol-2-one as a synthetic equivalent of a 3-arylhydroxyacetone enolate. Tetrahedron Letters, 2013, 54, 6624-6626.	1.4	5
24	A highly regioselective, protecting group controlled, synthesis of bicyclic compounds via Pd-catalysed intramolecular cyclisations. Tetrahedron Letters, 2013, 54, 2243-2246.	1.4	4
25	A simple and convenient synthesis of tautomeric (6 or 2)-hydroxy-4-methyl-(2 or 6)-oxo-1-(substituted) Tj ETQq1	1 0.78431 1.8	14 rgBT /Ovei
26	Synthesis, Electrochemistry, and Hierarchical Selfâ€Organization of Fulleropyrrolidine–Phthalimide Dyads. European Journal of Organic Chemistry, 2013, 2013, 2188-2193.	2.4	9
27	The Prospect of Selective Recognition of Nerve Agents with Modular Basket-like Hosts. A Structure–Activity Study of the Entrapment of a Series of Organophosphonates in Aqueous Media. Journal of Physical Chemistry B, 2013, 117, 3240-3249.	2.6	25
28	A Useful Synthetic Equivalent of a Hydroxyacetone Enolate. Organic Letters, 2011, 13, 4720-4723.	4.6	8
29	Palladium-catalyzed cross-couplings of allylic phosphates. Tetrahedron Letters, 2009, 50, 1858-1860.	1.4	25
30	A useful synthetic equivalent of an acetone enolate. Tetrahedron Letters, 2009, 50, 6709-6711.	1.4	9
31	Supramolecular Catalysis at Work:  Diastereoselective Synthesis of a Molecular Bowl with Dynamic Inner Space. Journal of Organic Chemistry, 2008, 73, 355-363.	3.2	32
32	A 3-fold "Butterfly Valve―in Command of the Encapsulation's Kinetic Stability. Molecular Baskets at Work. Journal of the American Chemical Society, 2008, 130, 15127-15133.	13.7	40
33	Radical reactions of xanthates: Annulation of the cyclopentene ring. Journal of the Serbian Chemical Society, 2007, 72, 1173-1179.	0.8	1
34	Silver(I) Mediated Folding of a Molecular Basket. Organic Letters, 2007, 9, 2301-2304.	4.6	20
35	Allosteric Regulation of the Conformational Dynamics of a Cavitand Receptor. Organic Letters, 2006, 8, 3697-3700.	4.6	10
36	Design, Synthesis, and Conformational Dynamics of a Gated Molecular Basket. Journal of the American Chemical Society, 2006, 128, 5887-5894.	13.7	70

VESELIN MASLAK

#	Article	IF	CITATIONS
37	Reaction of Silyl Ketene Acetals with Epoxides: A New Method for the Synthesis of ?-Butanolides ChemInform, 2005, 36, no.	0.0	0
38	Reaction of silyl ketene acetals with epoxides: a new method for the synthesis of Î ³ -butanolides. Tetrahedron, 2004, 60, 8957-8966.	1.9	29
39	Titanium tetrachloride promoted reaction of silyl ketene acetals with epoxides: a new method for the synthesis of Î ³ -butanolides. Tetrahedron Letters, 2002, 43, 5411-5413.	1.4	12
40	Titanium Tetrachloride Promoted Reaction of Silyl Ketene Acetals with Epoxides: A New Method for the Synthesis of \hat{I}^3 â€Butanolides ChemInform, 2002, 33, 125-125.	0.0	0
41	Sequential Free Radical Reactions with Xanthates: Cyclopentane Ring Annulation. Synlett, 1998, 1998, 1435-1437.	1.8	20
42	Highly exo selective, photochemically promoted cyclization of iodoallene derivatives. Journal of Heterocyclic Chemistry, 0, , .	2.6	0