List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139535/publications.pdf Version: 2024-02-01

ΔΙΔΝΙΟΔΥΠΟΟΝ

#	Article	IF	CITATIONS
1	Derivation of induced pluripotent stem cell lines from New Zealand donors. Journal of the Royal Society of New Zealand, 2022, 52, 54-67.	1.9	5
2	Modeling oxidative injury response in human kidney organoids. Stem Cell Research and Therapy, 2022, 13, 76.	5.5	14
3	Experimental models of acute kidney injury for translational research. Nature Reviews Nephrology, 2022, 18, 277-293.	9.6	32
4	Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury. ACS Pharmacology and Translational Science, 2022, 5, 207-215.	4.9	11
5	In Vitro and In Vivo Models to Study Nephropathic Cystinosis. Cells, 2022, 11, 6.	4.1	8
6	Cystinosin-deficient rats recapitulate the phenotype of nephropathic cystinosis. American Journal of Physiology - Renal Physiology, 2022, 323, F156-F170.	2.7	1
7	The Dynamics of Metabolic Characterization in iPSC-Derived Kidney Organoid Differentiation via a Comparative Omics Approach. Frontiers in Genetics, 2021, 12, 632810.	2.3	10
8	A Simplified Method for Generating Kidney Organoids from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.3	7
9	Mannosylation of pH-sensitive liposomes promoted cytoplasmic delivery of protein to macrophages: green fluorescent protein (GFP) performed as an endosomal escape tracer. Pharmaceutical Development and Technology, 2021, 26, 1000-1009.	2.4	3
10	Development of The Zebrafish Pronephric and Mesonephric Kidneys. , 2020, , 145-150.		1
11	<scp>ADAM10</scp> mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. Journal of Pathology, 2020, 252, 274-289.	4.5	18
12	SOX9 promotes stress-responsive transcription of VGF nerve growth factor inducible gene in renal tubular epithelial cells. Journal of Biological Chemistry, 2020, 295, 16328-16341.	3.4	20
13	Human Urinal Cell Reprogramming: Synthetic 3D Peptide Hydrogels Enhance Induced Pluripotent Stem Cell Population Homogeneity. ACS Biomaterials Science and Engineering, 2020, 6, 6263-6275.	5.2	8
14	Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells. STAR Protocols, 2020, 1, 100150.	1.2	18
15	Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 962-982.	6.1	53
16	Common Variants Coregulate Expression of <scp><i>GBA</i></scp> and Modifier Genes to Delay Parkinson's Disease Onset. Movement Disorders, 2020, 35, 1346-1356.	3.9	30
17	Evaluation of cisplatin-induced injury in human kidney organoids. American Journal of Physiology - Renal Physiology, 2020, 318, F971-F978.	2.7	60
18	The Utility of Human Kidney Organoids in Modeling Kidney Disease. Seminars in Nephrology, 2020, 40, 188-198.	1.6	11

#	Article	IF	CITATIONS
19	Transcriptional profiling of the zebrafish proximal tubule. American Journal of Physiology - Renal Physiology, 2019, 317, F478-F488.	2.7	17
20	Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	21
21	Turning mesoderm into kidney. Seminars in Cell and Developmental Biology, 2019, 91, 86-93.	5.0	26
22	The role of macrophages during acute kidney injury: destruction and repair. Pediatric Nephrology, 2019, 34, 561-569.	1.7	65
23	The Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney Disease. Cellular Physiology and Biochemistry, 2019, 52, 156-171.	1.6	44
24	Mind the gap: renal tubule responses to injury and the role of Cxcl12 and Myc. Annals of Translational Medicine, 2019, 7, S30-S30.	1.7	0
25	Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	1.6	Ο
26	A Simple Bioreactor-Based Method to Generate Kidney Organoids fromÂPluripotent Stem Cells. Stem Cell Reports, 2018, 11, 470-484.	4.8	181
27	Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney. Genes, 2018, 9, 197.	2.4	19
28	A novel mechanism of gland formation in zebrafish involving transdifferentiation of renal epithelial cells and live cell extrusion. ELife, 2018, 7, .	6.0	18
29	Pronephric tubule formation in zebrafish: morphogenesis and migration. Pediatric Nephrology, 2017, 32, 211-216.	1.7	14
30	Zebrafish Pronephros Development. Results and Problems in Cell Differentiation, 2017, 60, 27-53.	0.7	24
31	The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Developmental Biology, 2017, 428, 148-163.	2.0	38
32	Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Developmental Biology, 2017, 425, 130-141.	2.0	8
33	Nephron Repair in Mammals and Fish. , 2017, , 997-1003.		Ο
34	The Vital Dye CDr10b Labels the Zebrafish Mid-Intestine and Lumen. Molecules, 2017, 22, 454.	3.8	2
35	Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0165464.	2.5	32
36	Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish. Scientific Reports, 2016, 6, 35647.	3.3	9

#	Article	IF	CITATIONS
37	BMP and retinoic acid regulate anterior–posterior patterning of the non-axial mesoderm across the dorsal–ventral axis. Nature Communications, 2016, 7, 12197.	12.8	30
38	Zebrafish Renal Development and Regeneration. , 2016, , 5-16.		0
39	Organogenesis of the Zebrafish Kidney. , 2016, , 213-233.		0
40	Report on the 2nd Asiaâ€Pacific Kidney Development Workshop. Nephrology, 2015, 20, 443-443.	1.6	0
41	Development of the zebrafish mesonephros. Genesis, 2015, 53, 257-269.	1.6	44
42	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	12.8	103
43	The small molecule probe PT-Yellow labels the renal proximal tubules in zebrafish. Chemical Communications, 2015, 51, 395-398.	4.1	8
44	Kidney Regeneration in Fish. Nephron Experimental Nephrology, 2014, 126, 45-49.	2.2	12
45	Hnf1beta and nephron segmentation. Pediatric Nephrology, 2014, 29, 659-664.	1.7	18
46	Kidney regeneration: common themes from the embryo to the adult. Pediatric Nephrology, 2014, 29, 553-564.	1.7	26
47	Kidney Injury and Regeneration in Zebrafish. Seminars in Nephrology, 2014, 34, 437-444.	1.6	17
48	A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney International, 2013, 83, 1193-1200.	5.2	55
49	A Cdx4-Sall4 Regulatory Module Controls the Transition from Mesoderm Formation to Embryonic Hematopoiesis. Stem Cell Reports, 2013, 1, 425-436.	4.8	30
50	Histone Deacetylase Inhibitor Enhances Recovery after AKI. Journal of the American Society of Nephrology: JASN, 2013, 24, 943-953.	6.1	160
51	HNF1Î ² Is Essential for Nephron Segmentation during Nephrogenesis. Journal of the American Society of Nephrology: JASN, 2013, 24, 77-87.	6.1	81
52	Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mechanisms of Development, 2011, 128, 104-115.	1.7	55
53	Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Developmental Biology, 2011, 354, 134-142.	2.0	48
54	Transplantation of Cells Directly into the Kidney of Adult Zebrafish. Journal of Visualized Experiments, 2011, , .	0.3	6

#	Article	IF	CITATIONS
55	Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature, 2011, 470, 95-100.	27.8	258
56	Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Developmental Biology, 2011, 358, 318-330.	2.0	81
57	Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatric Nephrology, 2011, 26, 1435-1443.	1.7	47
58	Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and <i>irx3b</i> . Developmental Dynamics, 2011, 240, 2011-2027.	1.8	100
59	Zebrafish kidney development: Basic science to translational research. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 141-156.	3.6	52
60	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
61	Zebrafish Kidney Development. Methods in Cell Biology, 2010, 100, 233-260.	1.1	143
62	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
63	Mouse kidney development. Stembook, 2008, , .	0.3	37
64	The cdx Genes and Retinoic Acid Control the Positioning and Segmentation of the Zebrafish Pronephros. PLoS Genetics, 2007, 3, e189.	3.5	287
65	Nephron Development in Zebrafish. FASEB Journal, 2007, 21, A141.	0.5	2
66	Retinoic Acid Blockade Increases Primitive Blood Cell Formation in cdx4 Mutant Zebrafish Embryos, Murine Yolk Sac Explants and Differentiated Embryonic Stem Cells Blood, 2007, 110, 201-201.	1.4	32
67	The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Developmental Biology, 2006, 292, 506-518.	2.0	108
68	Sustained Bmp signaling is essential for cloaca development in zebrafish. Development (Cambridge), 2006, 133, 2275-2284.	2.5	88
69	Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature, 2005, 436, 1035-1039.	27.8	343
70	The â€~definitive' (and â€~primitive') guide to zebrafish hematopoiesis. Oncogene, 2004, 23, 7233-7246.	5.9	376
71	Derivation of Hematopoietic Stem Cells from Embryonic Stem Cells Blood, 2004, 104, 223-223.	1.4	1
72	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227

#	Article	IF	CITATIONS
73	BIOMEDICINE: Love, Honor, and Protect (Your Liver). Science, 2003, 299, 835-837.	12.6	20
74	Expression of Murine Interleukin 11 and its Receptor αâ€Chain in Adult and Embryonic Tissues. Stem Cells, 1997, 15, 119-124.	3.2	41