Jun-Long Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139357/publications.pdf

Version: 2024-02-01

81839 118793 4,630 111 39 62 citations g-index h-index papers 120 120 120 5066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nature Methods, 2012, 9, 727-729.	9.0	436
2	Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coordination Chemistry Reviews, 2019, 399, 213028.	9.5	196
3	Highly near-IR emissive ytterbium(<scp>iii</scp>) complexes with unprecedented quantum yields. Chemical Science, 2017, 8, 2702-2709.	3.7	136
4	A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4455-4460.	3.3	120
5	Soluble Polymer-Supported Ruthenium Porphyrin Catalysts for Epoxidation, Cyclopropanation, and Aziridination of Alkenes. Organic Letters, 2002, 4, 1911-1914.	2.4	117
6	Luminescent zinc salen complexes as single and two-photon fluorescence subcellular imaging probes. Chemical Communications, 2011, 47, 2435-2437.	2,2	106
7	π–π Interaction Assisted Hydrodefluorination of Perfluoroarenes by Gold Hydride: A Case of Synergistic Effect on C–F Bond Activation. Journal of the American Chemical Society, 2012, 134, 16216-16227.	6.6	104
8	Highly luminescent, biocompatible ytterbium(<scp>iii</scp>) complexes as near-infrared fluorophores for living cell imaging. Chemical Science, 2018, 9, 3742-3753.	3.7	101
9	Copperâ€Catalyzed Hydrodefluorination of Fluoroarenes by Copper Hydride Intermediates. Angewandte Chemie - International Edition, 2013, 52, 3203-3207.	7.2	95
10	A Water-Soluble Ruthenium Glycosylated Porphyrin Catalyst for Carbenoid Transfer Reactions in Aqueous Media with Applications in Bioconjugation Reactions. Journal of the American Chemical Society, 2010, 132, 1886-1894.	6.6	82
11	Dichlororuthenium(IV) Complex ofmeso-Tetrakis(2,6-dichlorophenyl)porphyrin: Active and Robust Catalyst for Highly Selective Oxidation of Arenes, Unsaturated Steroids, and Electron-Deficient Alkenes by Using 2,6-DichloropyridineN-Oxide. Chemistry - A European Journal, 2005, 11, 3899-3914.	1.7	73
12	Porphodilactones as Synthetic Chlorophylls: Relative Orientation of \hat{l}^2 -Substituents on a Pyrrolic Ring Tunes NIR Absorption. Journal of the American Chemical Society, 2014, 136, 9598-9607.	6.6	73
13	Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorganic Chemistry Frontiers, 2020, 7, 289-299.	3.0	7 3
14	Fluorescence lifetime imaging of upper gastrointestinal pH <i>in vivo</i> with a lanthanide based near-infrared <i>i,</i> probe. Chemical Science, 2019, 10, 4227-4235.	3.7	72
15	Oxidation Chemistry of Poly(ethylene glycol)-Supported Carbonylruthenium(II) and Dioxoruthenium(VI)meso-Tetrakis(pentafluorophenyl)porphyrin. Chemistry - A European Journal, 2006, 12, 3020-3031.	1.7	71
16	Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves (MCM-41 and) Tj ETQq0 0 0 rg	gBT /Overl 2.2	lock 10 Tf 50 1 69
10	supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b209276j/. Chemical Communications, 2002, , 2906-2907.	2, 2	09
17	Porpholactone Chemistry: An Emerging Approach to Bioinspired Photosensitizers with Tunable Near-Infrared Photophysical Properties. Accounts of Chemical Research, 2019, 52, 2620-2633.	7.6	69
18	Catalytic Câ€F Bond Activation of Perfluoroarenes by Tricoordinated Gold(I) Complexes. Advanced Synthesis and Catalysis, 2012, 354, 1529-1541.	2.1	67

#	Article	IF	Citations
19	Construction of an orthogonal ZnSalen/Salophen library as a colour palette for one- and two-photon live cell imaging. Chemical Science, 2014, 5, 2318.	3.7	66
20	Dendritic Ruthenium Porphyrins: A New Class of Highly Selective Catalysts for Alkene Epoxidation and Cyclopropanation. Chemistry - A European Journal, 2002, 8, 1554-1562.	1.7	64
21	Enhancing the reactivity of nickel($\langle scp \rangle ii \langle scp \rangle$) in hydrogen evolution reactions (HERs) by \hat{l}^2 -hydrogenation of porphyrinoid ligands. Chemical Science, 2017, 8, 5953-5961.	3.7	64
22	Gadolinium(III) Porpholactones as Efficient and Robust Singlet Oxygen Photosensitizers. Chemistry - A European Journal, 2016, 22, 9676-9686.	1.7	61
23	PEG-Linked luminescent platinum(ii) complex as aqueous polymeric molecular light switch for protein binding reactionsElectronic supplementary information (ESI) available: general experimental procedure, synthesis and characterization of 1 and 2, titration experiments and urea unfolding of BSA. See http://www.rsc.org/suppdata/cc/b2/b207395a/. Chemical Communications. 2002 2556-2557.	2.2	60
24	Ruthenium(II) porphyrin catalyzed cyclopropanation of alkenes with tosylhydrazones. Tetrahedron Letters, 2003, 44, 8733-8737.	0.7	60
25	Split and Use: Structural Isomers for Diagnosis and Therapy. Journal of the American Chemical Society, 2020, 142, 6761-6768.	6.6	58
26	Rational design of ZnSalen as a single and two photon activatable fluorophore in living cells. Chemical Science, 2012, 3, 3315.	3.7	57
27	Hydrocarbon Oxidation by β-Halogenated Dioxoruthenium(VI) Porphyrin Complexes: Effect of Reduction Potential (RuVI/V) and Cï½H Bond-Dissociation Energy on Rate Constants. Chemistry - A European Journal, 2005, 11, 7040-7053.	1.7	56
28	Iron(<scp>iii</scp>) tetrakis(pentafluorophenyl)porpholactone catalyzes nitrogen atom transfer to C and C–H bonds with organic azides. Dalton Transactions, 2012, 41, 1457-1460.	1.6	56
29	Ytterbium(III) Porpholactones: βâ€Lactonization of Porphyrin Ligands Enhances Sensitization Efficiency of Lanthanide Nearâ€Infrared Luminescence. Chemistry - A European Journal, 2014, 20, 4324-4333.	1.7	53
30	Unravelling the correlation between metal induced aggregation and cellular uptake/subcellular localization of Znsalen: an overlooked rule for design of luminescent metal probes. Chemical Science, 2015, 6, 2389-2397.	3.7	52
31	The Important Role of Covalent Anchor Positions in Tuning Catalytic Properties of a Rationally Designed MnSalen-Containing Metalloenzyme. ACS Catalysis, 2011, 1, 1083-1089.	5.5	51
32	Combining myeloperoxidase (MPO) with fluorogenic ZnSalen to detect lysosomal hydrogen peroxide in live cells. Chemical Science, 2013, 4, 2947.	3.7	49
33	Ruthenium atalyzed Oxidation of the Porphyrin β,β′â€Pyrrolic Ring: A General and Efficient Approach to Porpholactones. Advanced Synthesis and Catalysis, 2012, 354, 3509-3516.	2.1	47
34	Copper–sulfenate complex from oxidation of a cavity mutant of <i>Pseudomonas aeruginosa </i> i>azurin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 924-929.	3.3	46
35	Design of Near-Infrared Luminescent Lanthanide Complexes Sensitive to Environmental Stimulus through Rationally Tuning the Secondary Coordination Sphere. Inorganic Chemistry, 2018, 57, 1332-1341.	1.9	46
36	Angstrom Scale Chemical Analysis of Metal Supported <i>Trans</i> and <i>Cis</i> -Regioisomers by Ultrahigh Vacuum Tip-Enhanced Raman Mapping. Nano Letters, 2019, 19, 3267-3272.	4.5	46

#	Article	lF	CITATIONS
37	Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. Journal of the American Chemical Society, 2021, 143, 7541-7552.	6.6	42
38	Fine-Tuning of \hat{l}^2 -Substitution to Modulate the Lowest Triplet Excited States: A Bioinspired Approach to Design Phosphorescent Metalloporphyrinoids. Journal of the American Chemical Society, 2015, 137, 10745-10752.	6.6	41
39	Rational design of an "all-in-one―phototheranostic. Chemical Science, 2020, 11, 8204-8213.	3.7	41
40	Protein scaffold of a designed metalloenzyme enhances the chemoselectivity in sulfoxidation of thioanisole. Chemical Communications, 2008, , 1665.	2.2	40
41	Heterogeneous asymmetric addition of diethylzinc to aromatic aldehydes catalyzed by Ti(IV)/imine bridged poly(R)-binaphthol. Tetrahedron: Asymmetry, 2000, 11, 2449-2454.	1.8	39
42	A proof-of-concept application of water-soluble ytterbium(<scp>iii</scp>) molecular probes in <i>in vivo</i> NIR-II whole body bioimaging. Inorganic Chemistry Frontiers, 2019, 6, 1962-1967.	3.0	39
43	Strong Fluorescent Lanthanide Salen Complexes: Photophysical Properties, Excited-State Dynamics, and Bioimaging. Inorganic Chemistry, 2019, 58, 1806-1814.	1.9	39
44	Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform. Analytical Chemistry, 2018, 90, 1376-1383.	3.2	38
45	Synthetic porphyrin chemistry in China. Science China Chemistry, 2018, 61, 511-514.	4.2	37
46	Porphothionolactones: synthesis, structure, physical, and chemical properties of a chemodosimeter for hypochlorite. Organic and Biomolecular Chemistry, 2013, 11, 4613.	1.5	36
47	Tri-Manganese(III) Salen-Based Cryptands: A Metal Cooperative Antioxidant Strategy that Overcomes Ischemic Stroke Damage <i>In Vivo</i> Iournal of the American Chemical Society, 2020, 142, 10219-10227.	6.6	35
48	Lanthanide porphyrinoids as molecular theranostics. Chemical Society Reviews, 2022, 51, 6177-6209.	18.7	34
49	Dual facet of gold(iii) in the reactions of gold(iii) and porphyrins. Dalton Transactions, 2012, 41, 3116.	1.6	33
50	Effect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin. Metallomics, 2013, 5, 828.	1.0	33
51	\hat{l}^2 -Lactonization of fluorinated porphyrin enhances LDL binding affinity, cellular uptake with selective intracellular localization. Chemical Science, 2014, 5, 558-566.	3.7	33
52	Introducing Metallosalens into Biological Studies: The Renaissance of Traditional Coordination Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 5085-5093.	1.0	33
53	Noncovalent Modulation of pHâ€Dependent Reactivity of a Mn–Salen Cofactor in Myoglobin with Hydrogen Peroxide. Chemistry - A European Journal, 2009, 15, 7481-7489.	1.7	32
54	Stable group 8 metal porphyrin mono- and bis(dialkylcarbene) complexes: synthesis, characterization, and catalytic activity. Chemical Science, 2020, 11, 2243-2259.	3.7	32

#	Article	IF	CITATIONS
55	A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angewandte Chemie - International Edition, 2020, 59, 20147-20153.	7.2	32
56	Aerobic Oxidation of Primary Alcohols Catalyzed by Copper Salts and Catalytically Active μâ€Hydroxylâ€Bridged Trinuclear Copper Intermediate. Advanced Synthesis and Catalysis, 2010, 352, 2371-237	77 ^{2.1}	31
57	Bioinspired Orientation of \hat{l}^2 -Substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity. Inorganic Chemistry, 2017, 56, 1897-1905.	1.9	31
58	Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Current Opinion in Chemical Biology, 2022, 66, 102097.	2.8	31
59	A sensitive and quantitative autolysosome probe for detecting autophagic activity in live and prestained fixed cells. Autophagy, 2013, 9, 894-904.	4.3	28
60	Stable iso-bacteriochlorin mimics from porpholactone: effect of a β-oxazolone moiety on the frontier π-molecular orbitals. Inorganic Chemistry Frontiers, 2015, 2, 671-677.	3.0	28
61	A simple and non-amplification platform for femtomolar DNA and microRNA detection by combining automatic gold nanoparticle enumeration with target-induced strand-displacement. Biosensors and Bioelectronics, 2018, 105, 137-142.	5.3	28
62	Near Infrared (NIR) imaging: Exploring biologically relevant chemical space for lanthanide complexes. Journal of Inorganic Biochemistry, 2020, 209, 111118.	1.5	26
63	Molecular Assembly Directed by Metal–Aromatic Interactions: Control of the Aggregation and Photophysical Properties of Zn–Salen Complexes by Aromatic Mercuration. Chemistry - A European Journal, 2012, 18, 4242-4249.	1.7	25
64	Redesigning the Blue Copper Azurin into a Redox-Active Mononuclear Nonheme Iron Protein: Preparation and Study of Fe(II)-M121E Azurin. Journal of the American Chemical Society, 2014, 136, 12337-12344.	6.6	25
65	Constructing a Catalytic Cycle for C–F to C–X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack. Inorganic Chemistry, 2016, 55, 2274-2283.	1.9	25
66	A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chemical Communications, 2016, 52, 11583-11586.	2.2	24
67	Lutetium(<scp>iii</scp>) porphyrinoids as effective triplet photosensitizers for photon upconversion based on triplet–triplet annihilation (TTA). Inorganic Chemistry Frontiers, 2018, 5, 2291-2299.	3.0	24
68	Aromaticity versus regioisomeric effect of \hat{l}^2 -substituents in porphyrinoids. Physical Chemistry Chemical Physics, 2019, 21, 10152-10162.	1.3	24
69	Mimicking of Tunichlorin: Deciphering the Importance of a \hat{l}^2 -Hydroxyl Substituent on Boosting the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 2177-2188.	5.5	24
70	Precise Labeling and Tracking of Lipid Droplets in Adipocytes Using a Luminescent ZnSalen Complex. Chemistry - an Asian Journal, 2017, 12, 2533-2538.	1.7	23
71	A luminescent aluminium salen complex allows for monitoring dynamic vesicle trafficking from the Golgi apparatus to lysosomes in living cells. Chemical Science, 2018, 9, 1931-1939.	3.7	23
72	Unusual near infrared (NIR) fluorescent palladium(<scp>ii</scp>) macrocyclic complexes containing M–C bonds with bioimaging capability. Chemical Science, 2019, 10, 10170-10178.	3.7	23

#	Article	IF	CITATIONS
73	\hat{l}^2 -conjugation of gadolinium(III) DOTA complexes to zinc(II) porpholactol as potential multimodal imaging contrast agents. Journal of Porphyrins and Phthalocyanines, 2014, 18, 950-959.	0.4	22
74	βâ€lonic Conjugated Chlorinâ€Type Photosensitizers Based on Porpholactone: Synthesis, Photophysical Properties, and Photodynamic Activity. ChemPlusChem, 2015, 80, 237-252.	1.3	22
75	Nonaromatic Organonickel(II) Phototheranostics. Journal of the American Chemical Society, 2022, 144, 7346-7356.	6.6	22
76	Probing surface mediated configurations of nonplanar regioisomeric adsorbates using ultrahigh vacuum tip-enhanced Raman spectroscopy. Nanoscale, 2019, 11, 19877-19883.	2.8	20
77	Gallium (III) Complexes in Cancer Chemotherapy. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	20
78	Stereoselective Onâ€Surface Cyclodehydrofluorization of a Tetraphenylporphyrin and Homochiral Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 17413-17416.	7.2	19
79	Bioinspired Design of <i>seco</i> â€Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
80	$\hat{1}$ /4-Hydroxyl trinuclear copper(ii) clusters: reactivity and unusual formation in the three-component synthesis of 1,2,3-triazoles in aqueous media. Dalton Transactions, 2013, 42, 5390.	1.6	18
81	Cationic sulfonium functionalization renders Znsalens with high fluorescence, good water solubility and tunable cell-permeability. Organic and Biomolecular Chemistry, 2016, 14, 3360-3368.	1.5	18
82	\hat{l}^2 -Fluorinated porpholactones and metal complexes: synthesis, characterization and some spectroscopic studies. Inorganic Chemistry Frontiers, 2017, 4, 1539-1545.	3.0	18
83	Manganese protoporphyrin IX reconstituted myoglobin capable of epoxidation of the Cî \in C bond with Oxone ^{Â$^{\circ}$} . Inorganic Chemistry Frontiers, 2016, 3, 1236-1244.	3.0	16
84	Dendritic metalloporphyrins as catalysts for organic transformations. Comptes Rendus Chimie, 2003, 6, 1105-1115.	0.2	15
85	Orthogonally arranged tripyrrin–BODIPY conjugates with an "edge to plane―mode. Organic Chemistry Frontiers, 2019, 6, 2266-2274.	2.3	14
86	Rational Design of Fluorescent Phthalazinone Derivatives for One―and Twoâ€Photon Imaging. Chemistry - A European Journal, 2016, 22, 12363-12370.	1.7	12
87	Evidence for Ultralow-Energy Vibrations in Large Organic Molecules. Nano Letters, 2017, 17, 4929-4933.	4.5	11
88	The design of rigid cyclic tripyrrins: the importance of intermolecular interactions on aggregation and luminescence. Organic Chemistry Frontiers, 2018, 5, 1877-1885.	2.3	11
89	An ultrafast BODIPY single molecular sensor for multi-analytes (acid/base/Cu2+/Bi3+) with different sensing mechanism. Dyes and Pigments, 2019, 165, 279-286.	2.0	11
90	Tris(Znsalen) cryptand minimizes Znsalen aggregation arising from intermolecular Znâ√O interaction. Chinese Chemical Letters, 2015, 26, 937-941.	4.8	9

#	Article	IF	CITATIONS
91	Discovery of a potent and highly specific \hat{l}^2 2 proteasome inhibitor from a library of copper complexes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5780-5784.	1.0	8
92	Sulfur speciation defined subcellular localization of coumarin derivatives: Correlation of structural relationship to biological behaviors. Chinese Chemical Letters, 2018, 29, 267-270.	4.8	8
93	Construction of secondary coordination sphere boosts electrochemical CO2 reduction of iron porphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 465-472.	0.4	8
94	Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Topics in Current Chemistry, 2022, 380, .	3.0	8
95	Biomimetically constructing a hypoxia-activated programmable phototheranostics at the molecular level. Chemical Science, 2022, 13, 8979-8988.	3.7	8
96	Light-induced protein translocation by genetically encoded unnatural amino acid in Caenorhabditis elegans. Protein and Cell, 2013, 4, 883-886.	4.8	5
97	Marriage of phthalocyanine chemistry with lanthanides: a single-ion magnet with a blocking temperature up to 25 K. Inorganic Chemistry Frontiers, 2017, 4, 1950-1952.	3.0	5
98	Three bilindione isomers: synthesis, characterization and reactivity of biliverdin analogs. Journal of Biological Inorganic Chemistry, 2017, 22, 727-737.	1.1	4
99	Synthesis, characterization and reactivity of trans-dihydroxy platinum(IV) porphyrins. Journal of Porphyrins and Phthalocyanines, 2016, 20, 785-792.	0.4	3
100	Bioinspired Design of <i>seco</i> â€Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angewandte Chemie, 2022, 134, .	1.6	3
101	A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application. Inorganics, 2018, 6, 20.	1.2	2
102	Porpholactone Chemistry: Shining New Light on an Old Cofactor. ChemPlusChem, 2021, 86, 71-81.	1.3	2
103	A Gallium(III) Complex that Engages Protein Disulfide Isomerase A3 (PDIA3) as an Anticancer Target. Angewandte Chemie, 2020, 132, 20322-20328.	1.6	1
104	Porpholactone Chemistry: Shining New Light on an Old Cofactor. ChemPlusChem, 2021, 86, 4-4.	1.3	1
105	Design of luminescent ZnSalen for molecular imaging. Scientia Sinica Chimica, 2014, 44, 191-203.	0.2	1
106	Luminescent metal salen complex as intracellular microviscosity fluorescent sensor. Scientia Sinica Chimica, 2017, 47, 267-276.	0.2	1
107	Gadolinium(III) Porphyrinoid Phototheranostics. Chemistry - an Asian Journal, 2022, 17, .	1.7	1
108	Chiral Ruthenium Porphyrin Encapsulated in Ordered Mesoporous Molecular Sieves (MCM-41 and) Tj ETQq0 0 0 no.	rgBT /Over 0.1	rlock 10 Tf 50 0

7

#	Article	IF	CITATIONS
109	Ruthenium(II) Porphyrin Catalyzed Cyclopropanation of Alkenes with Tosylhydrazones ChemInform, 2004, 35, no.	0.1	O
110	Dendritic Metalloporphyrins as Catalysts for Organic Transformations. ChemInform, 2004, 35, no.	0.1	0
111	Soluble Polymerâ€Supported Ruthenium Porphyrin Catalysts for Epoxidation, Cyclopropanation, and Aziridination of Alkenes ChemInform, 2002, 33, 60-60.	0.1	O