Nicole A Doria-Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 2020, 383, 1920-1931.	27.0	2,719
2	Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 2010, 329, 856-861.	12.6	1,600
3	Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. New England Journal of Medicine, 2020, 383, 2427-2438.	27.0	1,242
4	SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586, 567-571.	27.8	1,153
5	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	27.0	936
6	Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature, 2012, 491, 406-412.	27.8	753
7	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
8	Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. New England Journal of Medicine, 2021, 384, 80-82.	27.0	665
9	Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. New England Journal of Medicine, 2021, 384, 2259-2261.	27.0	603
10	Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants. Science, 2021, 373, 1372-1377.	12.6	459
11	Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. New England Journal of Medicine, 2016, 375, 2037-2050.	27.0	391
12	SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. New England Journal of Medicine, 2022, 386, 1088-1091.	27.0	338
13	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
14	Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. Journal of Virology, 2010, 84, 1631-1636.	3.4	304
15	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
16	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	12.6	225
17	Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.	30.7	215
18	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	12.6	213

NICOLE A DORIA-ROSE

#	Article	IF	CITATIONS
19	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
20	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	28.9	179
21	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	12.6	174
22	Isolation of human monoclonal antibodies from peripheral blood B cells. Nature Protocols, 2013, 8, 1907-1915.	12.0	167
23	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
24	Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Reports, 2017, 19, 719-732.	6.4	160
25	HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host and Microbe, 2019, 25, 59-72.e8.	11.0	124
26	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
27	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
28	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95
29	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	12.4	87
30	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	14.3	85
31	Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science, 2021, 374, 1343-1353.	12.6	83
32	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
33	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
34	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	3.3	69
35	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	12.8	65
36	Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Science Translational Medicine, 2019, 11, .	12.4	65

NICOLE A DORIA-ROSE

#	Article	IF	CITATIONS
37	Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell, 2022, 185, 113-130.e15.	28.9	64
38	Immunogenicity of a Prefusion HIV-1 Envelope Trimer in Complex with a Quaternary-Structure-Specific Antibody. Journal of Virology, 2016, 90, 2740-2755.	3.4	58
39	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	6.4	53
40	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	6.4	52
41	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
42	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	2.5	41
43	Preclinical Development of a Fusion Peptide Conjugate as an HIV Vaccine Immunogen. Scientific Reports, 2020, 10, 3032.	3.3	36
44	Vaccination induces maturation in a mouse model of diverse unmutated VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. Immunity, 2021, 54, 324-339.e8.	14.3	36
45	Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding. Journal of Virology, 2016, 90, 10574-10586.	3.4	35
46	Predicting the broadly neutralizing antibody susceptibility of the HIV reservoir. JCI Insight, 2019, 4, .	5.0	25
47	Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. Journal of Clinical Investigation, 2020, 130, 3299-3304.	8.2	24
48	VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.	11.0	23
49	Development of a 3Mut-Apex-Stabilized Envelope Trimer That Expands HIV-1 Neutralization Breadth When Used To Boost Fusion Peptide-Directed Vaccine-Elicited Responses. Journal of Virology, 2020, 94,	3.4	21
50	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	4.7	20
51	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	6.4	19
52	Binding and neutralizing antibody responses to SARS-CoV-2 in very young children exceed those in adults. JCI Insight, 2022, 7, .	5.0	16
53	HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates. Journal of Virology, 2017, 91, .	3.4	15
54	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15

NICOLE A DORIA-ROSE

#	Article	IF	CITATIONS
55	Safety and immunogenicity of an HIV-1 prefusion-stabilized envelope trimer (Trimer 4571) vaccine in healthy adults: A first-in-human open-label, randomized, dose-escalation, phase 1 clinical trial. EClinicalMedicine, 2022, 48, 101477.	7.1	13
56	Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Reports, 2021, 35, 108937.	6.4	12
57	Characterization of the Neutralizing Antibody Response in a Case of Genetically Linked HIV Superinfection. Journal of Infectious Diseases, 2018, 217, 1530-1534.	4.0	6
58	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	4.7	6
59	Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure, 2022, 30, 862-875.e4.	3.3	4
60	Toll-like receptor 7-adapter complex modulates interferon-α production in HIV-stimulated plasmacytoid dendritic cells. PLoS ONE, 2019, 14, e0225806.	2.5	3
61	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
62	Structures of HIV-1 Neutralizing Antibody 10E8 Delineate the Mechanistic Basis of Its Multi-Peak Behavior on Size-Exclusion Chromatography. Antibodies, 2021, 10, 23.	2.5	2
63	Protocol to identify and monitor key mutations of broadly neutralizing antibody lineages following sequential immunization of Ig-humanized mice. STAR Protocols, 2022, 3, 101180.	1.2	0
64	Title is missing!. , 2019, 14, e0225806.		0
65	Title is missing!. , 2019, 14, e0225806.		0
66	Title is missing!. , 2019, 14, e0225806.		0
67	Title is missing!. , 2019, 14, e0225806.		Ο