Chang-An Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139153/publications.pdf

Version: 2024-02-01

933447 1199594 12 284 10 12 citations g-index h-index papers 13 13 13 388 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Eosin Y dye-based porous organic polymers for highly efficient heterogeneous photocatalytic dehydrogenative coupling reaction. RSC Advances, 2017, 7, 408-414.	3.6	55
2	Insights into the Asymmetric Heterogeneous Catalysis in Porous Organic Polymers: Constructing A TADDOLâ€Embedded Chiral Catalyst for Studying the Structure–Activity Relationship [[] []] . Chemistry - A European Journal, 2014, 20, 11019-11028.	3.3	46
3	N-Heterocyclic Carbene-based Microporous Organic Polymer Supported Palladium Catalyst for Carbon-Carbon Coupling Reaction. ChemistrySelect, 2016, 1, 1371-1376.	1.5	30
4	Bipyridyl palladium embedded porous organic polymer as highly efficient and reusable heterogeneous catalyst for Suzuki–Miyaura coupling reaction. RSC Advances, 2016, 6, 34866-34871.	3.6	26
5	The "bottom-up―construction of chiral porous organic polymers for heterogeneous asymmetric organocatalysis: MacMillan catalyst built-in nanoporous organic frameworks. Polymer Chemistry, 2017, 8, 5561-5569.	3.9	26
6	Porous organic frameworks with mesopores and [Ru(bpy) ₃] ²⁺ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst. Materials Chemistry Frontiers, 2019, 3, 1909-1917.	5.9	21
7	Phenanthroline-based microporous organic polymer as a platform for an immobilized palladium catalyst for organic transformations. RSC Advances, 2019, 9, 8239-8245.	3.6	20
8	Tetrathienoanthracene-functionalized conjugated microporous polymers as an efficient, metal-free visible-light solid organocatalyst for heterogeneous photocatalysis. Catalysis Science and Technology, 2021, 11 , 3799 - 3809 .	4.1	15
9	Advances in Porous Organic Catalysis. Acta Chimica Sinica, 2015, 73, 498.	1.4	15
10	Rareâ \in earth metalâ \in eatalyzed hydroboration of unsaturated compounds. Applied Organometallic Chemistry, 2022, 36, .	3.5	15
11	The bulky Pd-PEPPSI-embedded conjugated microporous polymer-catalyzed Suzuki–Miyaura cross-coupling of aryl chlorides and arylboronic acids. Polymer Chemistry, 2022, 13, 1547-1558.	3.9	8
12	<i>N</i> -Acyl-5,5-Dimethylhydantoins: Mild Acyl-Transfer Reagents for the Synthesis of Ketones Using Pd–PEPPSI or Pd/Phosphine Catalysts. Organic Process Research and Development, 2020, 24, 1043-1051.	2.7	7