Bojana Zegura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139058/publications.pdf Version: 2024-02-01

ROIANA ZECUDA

#	Article	IF	CITATIONS
1	Photodegradation, toxicity and density functional theory study of pharmaceutical metoclopramide and its photoproducts. Science of the Total Environment, 2022, 807, 150694.	8.0	11
2	HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment. Chemosphere, 2022, 291, 132805.	8.2	8
3	Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicology and Applied Pharmacology, 2022, 434, 115818.	2.8	2
4	Marine toxin domoic acid induces moderate toxicological response in non-target HepG2 cells. Toxicology, 2022, 470, 153157.	4.2	2
5	Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. Toxics, 2022, 10, 4.	3.7	4
6	Do cytotoxicity and cell death cause false positive results in the in vitro comet assay?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 881, 503520.	1.7	20
7	Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals. Science of the Total Environment, 2021, 755, 143255.	8.0	31
8	Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. Journal of Hazardous Materials, 2021, 403, 123593.	12.4	38
9	Deregulation of whole-transcriptome gene expression in zebrafish (Danio rerio) after chronic exposure to low doses of imatinib mesylate in a complete life cycle study. Chemosphere, 2021, 263, 128097.	8.2	9
10	Method to Disassemble Spheroids into Core and Rim for Downstream Applications Such as Flow Cytometry, Comet Assay, Transcriptomics, Proteomics, and Lipidomics. Methods in Molecular Biology, 2021, 2273, 173-188.	0.9	2
11	Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Frontiers in Microbiology, 2021, 12, 618209.	3.5	20
12	Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts—Microcystin and Retinoic Acid Content. Toxins, 2021, 13, 107.	3.4	17
13	3D Pharmacophore-Based Discovery of Novel KV10.1 Inhibitors with Antiproliferative Activity. Cancers, 2021, 13, 1244.	3.7	6
14	Chemoprotective Effects of Xanthohumol against the Carcinogenic Mycotoxin Aflatoxin B1. Foods, 2021, 10, 1331.	4.3	17
15	Polysaccharide-Based Bilayer Coatings for Biofilm-Inhibiting Surfaces of Medical Devices. Materials, 2021, 14, 4720.	2.9	9
16	DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Scientific Reports, 2021, 11, 16793.	3.3	36
17	Safe-by-design gelatin-modified zinc oxide nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	0
18	Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. Science of the Total Environment, 2021, 794, 148489.	8.0	15

BOJANA ZEGURA

#	Article	IF	CITATIONS
19	The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere, 2020, 240, 124880.	8.2	13
20	Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells, 2020, 9, 2557.	4.1	20
21	Marine toxin domoic acid induces in vitro genomic alterations in human peripheral blood cells. Toxicon, 2020, 187, 93-100.	1.6	4
22	Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nature Protocols, 2020, 15, 3817-3826.	12.0	189
23	Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins, 2020, 12, 778.	3.4	14
24	Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin. Environmental Pollution, 2020, 265, 114965.	7.5	21
25	Substituted 4,5′-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. Journal of Chemical Information and Modeling, 2020, 60, 3662-3678.	5.4	19
26	Plastics in Cyanobacterial Blooms—Genotoxic Effects of Binary Mixtures of Cylindrospermopsin and Bisphenols in HepG2 Cells. Toxins, 2020, 12, 219.	3.4	13
27	Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorganic Chemistry, 2020, 99, 103828.	4.1	11
28	Genotoxicity of the Residues of Anticancer Drugs: A Hazard for Aquatic Environment. , 2020, , 403-420.		1
29	Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Archives of Toxicology, 2019, 93, 3321-3333.	4.2	39
30	The application of the Comet assay in fish cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 842, 72-84.	1.7	14
31	Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Science of the Total Environment, 2019, 687, 267-276.	8.0	109
32	The comet assay in animal models: From bugs to whales – (Part 2 Vertebrates). Mutation Research - Reviews in Mutation Research, 2019, 781, 130-164.	5.5	46
33	Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. European Journal of Medicinal Chemistry, 2019, 175, 330-348.	5.5	20
34	The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). Mutation Research - Reviews in Mutation Research, 2019, 779, 82-113.	5.5	66
35	The first comprehensive safety study of Magnéli phase titanium suboxides reveals no acute environmental hazard. Environmental Science: Nano, 2019, 6, 1131-1139.	4.3	6
36	Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells. Food and Chemical Toxicology, 2019, 124, 349-358.	3.6	9

BOJANA ZEGURA

#	Article	IF	CITATIONS
37	Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C, 2019, 96, 776-789.	7.3	22
38	Genotoxic effects of neurotoxin ß-N-methylamino-l-alanine in human peripheral blood cells. Chemosphere, 2019, 214, 623-632.	8.2	10
39	Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals?. Archives of Toxicology, 2018, 92, 921-934.	4.2	31
40	Adipose tissue stem cell-derived hepatic progenies as an in vitro model for genotoxicity testing. Archives of Toxicology, 2018, 92, 1893-1903.	4.2	4
41	Evaluation of genotoxic potential in the Velika Morava River Basin in vitro and in situ. Science of the Total Environment, 2018, 621, 1289-1299.	8.0	23
42	Dose-Modifying Factor of Radiation Therapy with Concurrent Cisplatin Treatment in HPV-Positive Squamous Cell Carcinoma: A Preclinical Study. Radiation Research, 2018, 189, 644.	1.5	11
43	Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. Science of the Total Environment, 2017, 601-602, 293-300.	8.0	70
44	Assessment of the genotoxicity of the tyrosine kinase inhibitor imatinib mesylate in cultured fish and human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 814, 14-21.	1.7	20
45	Genotoxic potential of the binary mixture of cyanotoxins microcystin-LR and cylindrospermopsin. Chemosphere, 2017, 189, 319-329.	8.2	32
46	Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: Cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds. Science of the Total Environment, 2017, 574, 78-89.	8.0	39
47	Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells. Chemosphere, 2016, 154, 124-131.	8.2	50
48	Assessment of the mutagenic and genotoxic activity of cyanobacterial toxin beta-N-methyl-amino-L-alanine in Salmonella typhimurium. Toxicon, 2016, 118, 134-140.	1.6	5
49	Induction of micronuclei and alteration of gene expression by an organomodified clay in HepG2 cells. Chemosphere, 2016, 154, 240-248.	8.2	7
50	Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environmental Pollution, 2016, 219, 275-287.	7.5	125
51	Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2. Journal of Hazardous Materials, 2016, 304, 425-433.	12.4	23
52	Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment. Chemosphere, 2016, 147, 114-123.	8.2	30
53	Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. Environmental Pollution, 2016, 210, 192-201.	7.5	56
54	Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon, 2016, 110, 56-67.	1.6	59

BOJANA ZEGURA

#	Article	IF	CITATIONS
55	Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. Environmental Science and Pollution Research, 2016, 23, 14751-14761.	5.3	21
56	Genotoxic potential of selected cytostatic drugs in human and zebrafish cells. Environmental Science and Pollution Research, 2016, 23, 14739-14750.	5.3	55
57	An Overview of the Mechanisms of Microcystin-LR Genotoxicity and Potential Carcinogenicity. Mini-Reviews in Medicinal Chemistry, 2016, 16, 1042-1062.	2.4	60
58	Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Research, 2015, 77, 201-212.	11.3	81
59	Discovery of Mono―and Disubstituted 1 <i>H</i> â€Pyrazolo[3,4]pyrimidines and 9 <i>H</i> â€Purines as Catalytic Inhibitors of Human DNA Topoisomeraseâ€Ilα. ChemMedChem, 2015, 10, 345-359.	3.2	30
60	A cell-based biosensor system HepG2CDKN1A–DsRed for rapid and simple detection of genotoxic agents. Biosensors and Bioelectronics, 2014, 61, 102-111.	10.1	14
61	Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay. Chemosphere, 2014, 112, 362-369.	8.2	58
62	Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food and Chemical Toxicology, 2013, 59, 386-394.	3.6	44
63	Determination of estrogenic potential in waste water without sample extraction. Journal of Hazardous Materials, 2013, 260, 527-533.	12.4	20
64	Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells. Toxicology in Vitro, 2013, 27, 1809-1819.	2.4	29
65	The influence of cylindrospermopsin on oxidative DNA damage and apoptosis induction in HepG2 cells. Chemosphere, 2013, 92, 24-30.	8.2	35
66	Antigenotoxic Effect of Tartary (<i>Fagopyrum tataricum</i>) and Common (<i>Fagopyrum) Tj ETQq0 0 0 rgBT</i>	Overlock 1.5	10 Tf 50 302
67	Mutagenicity and DNA Damage of Bisphenol a and its Structural Analogues in Hepg2 Cells. Arhiv Za Higijenu Rada I Toksikologiju, 2013, 64, 189-200.	0.7	93
68	Double Strand Breaks and Cell-Cycle Arrest Induced by the Cyanobacterial Toxin Cylindrospermopsin in HepG2 Cells. Marine Drugs, 2013, 11, 3077-3090.	4.6	42
69	Protective effects of xanthohumol against the genotoxicity of heterocyclic aromatic amines MelQx and PhIP in bacteria and in human hepatoma (HepG2) cells. Food and Chemical Toxicology, 2012, 50, 949-955.	3.6	23
70	Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environmental Toxicology and Pharmacology, 2011, 32, 296-305.	4.0	48
71	Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 726, 116-122.	1.7	46
72	Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress. Toxicon, 2011, 58, 471-479.	1.6	68

Bojana Zegura

#	Article	IF	CITATIONS
73	Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutation Research - Reviews in Mutation Research, 2011, 727, 16-41.	5.5	259
74	Integration of GC-MSD and ER-Calux® assay into a single protocol for determining steroid estrogens in environmental samples. Science of the Total Environment, 2011, 409, 5069-5075.	8.0	16
75	Influence of TiO ₂ nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells. Journal of Physics: Conference Series, 2011, 304, 012037.	0.4	7
76	Genotoxic effects of the cyanobacterial hepatotoxin cylindrospermopsin in the HepG2 cell line. Archives of Toxicology, 2011, 85, 1617-1626.	4.2	78
77	DNA damage and alterations in expression of DNA damage responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 2011, 5, 341-353.	3.0	192
78	Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 691, 17-22.	1.0	52
79	Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food and Chemical Toxicology, 2009, 47, 260-266.	3.6	137
80	Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere, 2009, 75, 1453-1460.	8.2	147
81	Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine, 2008, 15, 216-220.	5.3	19
82	Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon, 2008, 52, 518-525.	1.6	65
83	Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon, 2008, 51, 615-623.	1.6	93
84	Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 632, 1-8.	1.7	65
85	Subchronic exposure of rats to sublethal dose of microcystin-YR induces DNA damage in multiple organs. Radiology and Oncology, 2007, 41, .	1.7	14
86	Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 611, 25-33.	1.7	83
87	The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology, 2004, 200, 59-68.	4.2	146
88	Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon, 2003, 41, 41-48.	1.6	197