Indrajit Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139034/publications.pdf

Version: 2024-02-01

840776 888059 17 333 11 17 h-index citations g-index papers 20 20 20 284 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Nonâ€Bonding 1,4â€Sulphurâ€Oxygen Interaction Governs the Reactivity of αâ€Ketothioesters in Triphenylphosphineâ€Catalyzed Cyclization with Acetylenedicarboxylates. Advanced Synthesis and Catalysis, 2021, 363, 1014-1021.	4.3	4
2	Recent Advances in the Synthesis and Applications of αâ€Ketothioesters. Advanced Synthesis and Catalysis, 2021, 363, 1160-1184.	4.3	5
3	Solvent Dependent Divergent Reactivity of Electronâ€Rich Dienones with and without Visible Light: Access to Cyclopropanated Furans and Butenolides. Advanced Synthesis and Catalysis, 2020, 362, 609-617.	4.3	10
4	C ₃ â€Thioester/â€Ester Substituted Linear Dienones: A Pluripotent Molecular Platform for Diversification via Cascade Pericyclic Reactions. Advanced Synthesis and Catalysis, 2020, 362, 3604-3612.	4.3	4
5	Transitionâ€Metalâ€Free Reduction of <i>α</i> à€Keto Thioesters with Hydrosilanes at Room Temperature: Divergent Synthesis through Reagentâ€Controlled Chemoselectivities. Advanced Synthesis and Catalysis, 2019, 361, 2347-2353.	4.3	10
6	Visible-Light-Activated Divergent Reactivity of Dienones: Dimerization in Neat Conditions and Regioselective <i>E</i> to <i>Z</i> Isomerization in the Solvent. Organic Letters, 2019, 21, 1578-1582.	4.6	29
7	Copper(II)-Catalyzed Reactions of α-Keto Thioesters with Azides via C–C and C–S Bond Cleavages: Synthesis of <i>N</i> -Acylureas and Amides. Journal of Organic Chemistry, 2018, 83, 2114-2124.	3.2	23
8	αâ€Keto Thioesters as Building Blocks for Accessing γâ€Hydroxybutenolides and Oxazoles. Advanced Synthesis and Catalysis, 2017, 359, 2692-2698.	4.3	14
9	Elusive Thiyl Radical Migration in a Visible Light Induced Chemoselective Rearrangement of γâ€Keto Acrylate Thioesters: Synthesis of Substituted Butenolides. Advanced Synthesis and Catalysis, 2017, 359, 875-885.	4.3	15
10	Direct Access to 2â€Thioxooxazolidinâ€4â€ones and Oxazolidineâ€2,4â€diones from αâ€Keto Thioesters through Thiolate Transfer. Advanced Synthesis and Catalysis, 2017, 359, 4405-4410.	¹ 4.3	14
11	Tandem Chemoselective $1,2\hat{a} \in 1,4\hat{a} \in M$ igration of the Thio Group in Keto Thioesters: An Efficient Approach to Substituted Butenolides. Advanced Synthesis and Catalysis, 2016, 358, 3212-3230.	4.3	24
12	Base Induced Chiral Substituted Furans and Imidazoles from Carbohydrate-Derived 2-Haloenones. Journal of Organic Chemistry, 2016, 81, 932-945.	3.2	13
13	Chiral Substituted 3â€Formylfurans from Carbohydrates: An Expedient Route via <i>N</i> â€Bromosuccinimide (NBS)â€Mediated Electrophilic Cyclization. Asian Journal of Organic Chemistry, 2015, 4, 1132-1143.	2.7	11
14	PPh ₃ ·HBr–DMSO: A Reagent System for Diverse Chemoselective Transformations. Journal of Organic Chemistry, 2015, 80, 6400-6410.	3.2	43
15	Znl ₂ -Catalyzed Diastereoselective [4 + 2] Cycloadditions of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l} ±-Ketothioesters with Olefins. Journal of Organic Chemistry, 2015, 80, 2972-2988.	3.2	36
16	PPh ₃ â <hbrâ€dmso 2â€methylsulfanylâ€3(<i="" and="" application="" enals:="" expedient="" mediated="" of="" synthesis="" the="" to="" αâ€bromo="" αâ€ketomethylthioesters="" β,γâ€unsaturated="" γâ€substituted="">2 H)â€furanones. Chemistry - A European Journal, 2014, 20, 662-667.</hbrâ€dmso>	3.3	52
17	Gold(III) Chloride Catalyzed Synthesis of Chiral Substituted 3â€Formyl Furans from Carbohydrates: Application in the Synthesis of 1,5â€Dicarbonyl Derivatives and Furo[3,2â€ <i>c</i> pyridine. Chemistry - A European Journal, 2014, 20, 11932-11945.	3.3	26