Monte M Winslow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5139005/publications.pdf

Version: 2024-02-01

69 papers 9,422 citations

43 h-index 102487 66 g-index

82 all docs

82 docs citations

times ranked

82

16663 citing authors

#	Article	IF	CITATIONS
1	Tumor suppressor pathways shape EGFR-driven lung tumor progression and response to treatment. Molecular and Cellular Oncology, 2022, 9, 1994328.	0.7	O
2	LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer. Nature Communications, 2022, 13, 1090.	12.8	5
3	Combinatorial Inactivation of Tumor Suppressors Efficiently Initiates Lung Adenocarcinoma with Therapeutic Vulnerabilities. Cancer Research, 2022, 82, 1589-1602.	0.9	7
4	Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects. Nucleic Acids Research, 2021, 49, e36-e36.	14.5	17
5	A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS–Driven Lung Cancer. Cancer Discovery, 2021, 11, 1754-1773.	9.4	35
6	Genetic Determinants of EGFR-Driven Lung Cancer Growth and Therapeutic Response <i>In Vivo</i> Cancer Discovery, 2021, 11, 1736-1753.	9.4	59
7	The AMBRA1 E3 ligase adaptor regulates the stability of cyclinÂD. Nature, 2021, 592, 794-798.	27.8	76
8	Quantitative <i>In Vivo</i> Analyses Reveal a Complex Pharmacogenomic Landscape in Lung Adenocarcinoma. Cancer Research, 2021, 81, 4570-4580.	0.9	13
9	<i>miR-200</i> deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes and Development, 2021, 35, 1109-1122.	5. 9	35
10	LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nature Cell Biology, 2021, 23, 915-924.	10.3	26
11	Altered Mitochondria Functionality Defines a Metastatic Cell State in Lung Cancer and Creates an Exploitable Vulnerability. Cancer Research, 2021, 81, 567-579.	0.9	27
12	Mechanisms of small cell lung cancer metastasis. EMBO Molecular Medicine, 2021, 13, e13122.	6.9	102
13	Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Reports, 2021, 37, 110056.	6.4	24
14	Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Molecular Cell, 2020, 80, 452-469.e9.	9.7	44
15	CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature, 2020, 580, 136-141.	27.8	203
16	A versatile system to record cell-cell interactions. ELife, 2020, 9, .	6.0	30
17	An LKB1–SIK Axis Suppresses Lung Tumor Growth and Controls Differentiation. Cancer Discovery, 2019, 9, 1590-1605.	9.4	71
18	Axon-like protrusions promote small cell lung cancer migration and metastasis. ELife, 2019, 8, .	6.0	37

#	Article	lF	Citations
19	Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nature Genetics, 2018, 50, 483-486.	21.4	101
20	Hmga2 is dispensable for pancreatic cancer development, metastasis, and therapy resistance. Scientific Reports, 2018, 8, 14008.	3.3	25
21	Towards quantitative and multiplexed in vivo functional cancer genomics. Nature Reviews Genetics, 2018, 19, 741-755.	16.3	45
22	Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer Discovery, 2018, 8, 1316-1331.	9.4	123
23	Tumor Suppressor Activity of Selenbp1, a Direct Nkx2-1 Target, in Lung Adenocarcinoma. Molecular Cancer Research, 2018, 16, 1737-1749.	3.4	40
24	Molecular definition of a metastatic lung cancer state reveals a targetable CD109–Janus kinase–Stat axis. Nature Medicine, 2017, 23, 291-300.	30.7	126
25	A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nature Methods, 2017, 14, 737-742.	19.0	105
26	BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer. Cancer Discovery, 2017, 7, 1184-1199.	9.4	53
27	Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nature Communications, 2017, 8, 2053.	12.8	78
28	Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5625-E5634.	7.1	116
29	CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620.	8.2	336
30	Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell, 2016, 166, 328-342.	28.9	304
31	An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency. Cancer Cell, 2016, 29, 697-710.	16.8	99
32	An in vivo multiplexed small-molecule screening platform. Nature Methods, 2016, 13, 883-889.	19.0	57
33	Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2. PLoS Genetics, 2015, 11, e1005408.	3.5	68
34	Recombinase-based conditional and reversible gene regulation via XTR alleles. Nature Communications, 2015, 6, 8783.	12.8	31
35	Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes and Development, 2015, 29, 1576-1585.	5.9	223
36	Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chemical Biology, 2015, 10, 1977-1988.	3.4	102

#	Article	IF	CITATIONS
37	Obligate Progression Precedes Lung Adenocarcinoma Dissemination. Cancer Discovery, 2014, 4, 781-789.	9.4	48
38	HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature, 2014, 505, 212-217.	27.8	253
39	A Conditional System to Specifically Link Disruption of Protein-Coding Function with Reporter Expression in Mice. Cell Reports, 2014, 7, 2078-2086.	6.4	9
40	An AMPK-Independent Signaling Pathway Downstream of the LKB1 Tumor Suppressor Controls Snail1 and Metastatic Potential. Molecular Cell, 2014, 55, 436-450.	9.7	105
41	Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10299-10304.	7.1	77
42	Differential <i>Tks5</i> isoform expression contributes to metastatic invasion of lung adenocarcinoma. Genes and Development, 2013, 27, 1557-1567.	5.9	62
43	MicroRNA-33a Mediates the Regulation of High Mobility Group AT-Hook 2 Gene (HMGA2) by Thyroid Transcription Factor 1 (TTF-1/NKX2–1). Journal of Biological Chemistry, 2013, 288, 16348-16360.	3.4	56
44	Characterizing deformability and surface friction of cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7580-7585.	7.1	297
45	Occludin Is a Direct Target of Thyroid Transcription Factor-1 (TTF-1/NKX2–1). Journal of Biological Chemistry, 2012, 287, 28790-28801.	3.4	43
46	Nuclear factor I/B is an oncogene in small cell lung cancer. Genes and Development, 2011, 25, 1470-1475.	5.9	142
47	Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8773-8778.	7.1	213
48	Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 2011, 473, 101-104.	27.8	383
49	Endogenous T Cell Responses to Antigens Expressed in Lung Adenocarcinomas Delay Malignant Tumor Progression. Cancer Cell, 2011, 19, 72-85.	16.8	209
50	Response and Resistance to NF-κB Inhibitors in Mouse Models of Lung Adenocarcinoma. Cancer Discovery, 2011, 1, 236-247.	9.4	116
51	Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature, 2010, 468, 572-575.	27.8	255
52	Selective role of calcineurin in haematopoiesis and lymphopoiesis. EMBO Reports, 2008, 9, 1141-1148.	4.5	17
53	Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17â ¹ /492 Family of miRNA Clusters. Cell, 2008, 132, 875-886.	28.9	1,504
54	Enhanced NFATc1 Nuclear Occupancy Causes T Cell Activation Independent of CD28 Costimulation. Journal of Immunology, 2007, 178, 4315-4321.	0.8	38

#	Article	IF	CITATIONS
55	Selective Role of NFATc3 in Positive Selection of Thymocytes. Journal of Immunology, 2007, 179, 103-110.	0.8	45
56	An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development. Neuron, 2007, 55, 201-215.	8.1	647
57	Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature, 2007, 450, 731-735.	27.8	63
58	Calcineurin/NFAT Signaling in Osteoblasts Regulates Bone Mass. Developmental Cell, 2006, 10, 771-782.	7.0	313
59	The Calcineurin Phosphatase Complex Modulates Immunogenic B Cell Responses. Immunity, 2006, 24, 141-152.	14.3	86
60	CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nature Immunology, 2006, 7, 482-488.	14 . 5	92
61	NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature, 2006, 441, 595-600.	27.8	639
62	Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function. Nature, 2006, 443, 345-349.	27.8	397
63	Thymocyte Negative Selection Is Mediated by Protein Kinase C- and Ca2+-Dependent Transcriptional Induction of Bim. Journal of Immunology, 2006, 176, 2299-2306.	0.8	76
64	IMMUNOLOGY: Decoding Calcium Signaling. Science, 2005, 307, 56-57.	12.6	21
65	Calcineurin B1 Is Essential for Positive but Not Negative Selection during Thymocyte Development. Immunity, 2004, 20, 255-266.	14.3	200
66	Calcium signalling in lymphocytes. Current Opinion in Immunology, 2003, 15, 299-307.	5. 5	105
67	Major Histocompatibility Complex Class II Presentation of Cell-associated Antigen Is Mediated by CD8α+ Dendritic Cells In Vivo. Journal of Experimental Medicine, 2002, 195, 683-694.	8.5	50
68	Barcoding lentiviral Cre vectors for use in experiments involving downstream Tuba-seq analysis Protocol Exchange, 0, , .	0.3	3
69	Genomic DNA Isolation from Tissue Samples and Library Prep for Tuba-Seq Barcode Analysis. Protocol Exchange, 0, , .	0.3	2