Richard Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5138982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Psychological Allostatic Load: the Cost of Persistence in STEM Disciplines. Research in Science Education, 2022, 52, 1187-1206.	2.3	5
2	Real-time prediction of science student learning outcomes using machine learning classification of hemodynamics during virtual reality and online learning sessions. Computers and Education Artificial Intelligence, 2022, 3, 100078.	10.8	4
3	Virtual reality tour for first-time users of highly automated cars: Comparing the effects of virtual environments with different levels of interaction fidelity. Applied Ergonomics, 2021, 90, 103226.	3.1	25
4	Computational Modeling of the Effects of the Science Writing Heuristic on Student Critical Thinking in Science Using Machine Learning. Journal of Science Education and Technology, 2021, 30, 283-297.	3.9	13
5	Virtual Reality Simulations in Science Education. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 289-313.	0.2	Ο
6	Validation of a Measure of STEM Interest for Adolescents. International Journal of Science and Mathematics Education, 2020, 18, 279-293.	2.5	22
7	Cognitive Modeling of Learning Using Big Data From a Science-Based Game Development Environment. International Journal of Game-Based Learning, 2020, 10, 22-39.	1.4	0
8	Virtual Reality: a Tool for Preservice Science Teachers to Put Theory into Practice. Journal of Science Education and Technology, 2020, 29, 573-585.	3.9	23
9	Virtual Reality Laboratories: A Way Forward for Schools?. Eurasia Journal of Mathematics, Science and Technology Education, 2020, 16, em1856.	1.3	18
10	Virtual Reality to Train Preservice Teachers. Advances in Game-based Learning, 2020, , 141-154.	0.3	2
11	Contributions of language-specific and metacognitive skills to science reading comprehension of middle school English learners. Bilingual Research Journal, 2019, 42, 150-163.	1.2	5
12	Virtual Reality Simulations and Writing: a Neuroimaging Study in Science Education. Journal of Science Education and Technology, 2019, 28, 542-552.	3.9	15
13	Virtual Reality Simulation: Effects on Academic Performance Within Two Domains of Writing in Science. Journal of Science Education and Technology, 2019, 28, 371-381.	3.9	26
14	A computational model of student cognitive processes while solving a critical thinking problem in science. Journal of Educational Research, 2019, 112, 243-254.	1.6	6
15	Project-Based Learning Progressions: Identifying the Nodes of Learning in a Project-Based Environment. , 2019, , 163-181.		6
16	Development and psychometric properties of the Healthy Aging Activity Engagement Scale (HAAE). Aging and Mental Health, 2019, 23, 357-364.	2.8	7
17	Examining human behavior in video games: The development of a computational model to measure aggression. Social Neuroscience, 2018, 13, 301-317.	1.3	8
18	The Cooperative Classroom Environment Measure (CCEM): Refining a Measure that Assesses Factors Motivating Student Prosociality. International Journal of Science and Mathematics Education, 2018, 16, 677-697.	2.5	7

RICHARD LAMB

#	Article	IF	CITATIONS
19	Psychosocial factors impacting STEM career selection. Journal of Educational Research, 2018, 111, 446-458.	1.6	14
20	A meta-analysis with examination of moderators of student cognition, affect, and learning outcomes while using serious educational games, serious games, and simulations. Computers in Human Behavior, 2018, 80, 158-167.	8.5	195
21	Conditional cooperators: student prosocial dispositions and their perceptions of the classroom social environment. Learning Environments Research, 2018, 21, 229-244.	2.8	10
22	After-School and Informal STEM Projects: the Effect of Participant Self-Selection. Journal of Science Education and Technology, 2018, 27, 248-255.	3.9	13
23	Examination of the role of training and fidelity of implementation in the use of assistive communications for children with autism spectrum disorder: a metaâ€analysis of the Picture Exchange Communication System. British Journal of Special Education, 2018, 45, 454-472.	0.4	8
24	Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers and Education, 2018, 124, 14-26.	8.3	62
25	Science Teacher Education as a Way Forward for Medical Schools: A Case for Medical Pedagogical Content Knowledge. Journal of Science Teacher Education, 2018, 29, 173-178.	2.5	1
26	The Application of Multiobjective Evolutionary Algorithms to an Educational Computational Model of Science Information Processing: a Computational Experiment in Science Education. International Journal of Science and Mathematics Education, 2017, 15, 473-486.	2.5	0
27	The interface of creativity, fluency, lateral thinking, and technology while designing Serious Educational Games in a science classroom. Electronic Journal of Research in Educational Psychology, 2017, 13, 219-242.	0.6	6
28	A computational modeling of rapid attitude formation during surveys about immigrants and immigration. Computers in Human Behavior, 2016, 63, 179-188.	8.5	3
29	Examination of the Effects of Dimensionality on Cognitive Processing in Science: A Computational Modeling Experiment Comparing Online Laboratory Simulations and Serious Educational Games. Journal of Science Education and Technology, 2016, 25, 1-15.	3.9	24
30	Podcasts on Mobile Devices as a Read-Aloud Testing Accommodation in Middle School Science Assessment. Journal of Science Education and Technology, 2016, 25, 263-273.	3.9	12
31	Examination of Variables That May Affect the Relationship Between Cognition and Functional Status in Individuals with Mild Cognitive Impairment: A Meta-Analysis. Archives of Clinical Neuropsychology, 2016, 31, acv089.	0.5	67
32	Examination of the Nonlinear Dynamic Systems Associated with Science Student Cognition While Engaging in Science Information Processing. International Journal of Science and Mathematics Education, 2016, 14, 187-205.	2.5	14
33	Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms. Computation, 2015, 3, 427-443.	2.0	11
34	Development of a cognition-priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 2015, 52, 410-437.	3.3	80
35	Cognitive diagnostic like approaches using neural-network analysis ofÂserious educational videogames. Computers and Education, 2014, 70, 92-104.	8.3	43
36	Development and Psychometric Properties of the Instrumental Activities of Daily Living: Compensation Scale. Archives of Clinical Neuropsychology, 2014, 29, 776-792.	0.5	66

RICHARD LAMB

#	Article	IF	CITATIONS
37	Examination of allostasis and online laboratory simulations in a middle school science classroom. Computers in Human Behavior, 2014, 39, 224-234.	8.5	20
38	Development of a Short-Form Measure of Science and Technology Self-efficacy Using Rasch Analysis. Journal of Science Education and Technology, 2014, 23, 641-657.	3.9	37
39	A computational modeling of student cognitive processes in science education. Computers and Education, 2014, 79, 116-125.	8.3	22
40	Safe science classrooms: Teacher training through serious educational games. Information Sciences, 2014, 264, 61-74.	6.9	24
41	The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class. Journal of Science Education and Technology, 2013, 22, 603-613.	3.9	34
42	Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning. Journal of Science Education and Technology, 2013, 22, 47-61.	3.9	43
43	The gorilla in the room: The impacts of video-game play on visual attention. Computers in Human Behavior, 2013, 29, 2183-2187.	8.5	20
44	MEASURING SCIENCE INTEREST: RASCH VALIDATION OF THE SCIENCE INTEREST SURVEY. International Journal of Science and Mathematics Education, 2012, 10, 643-668.	2.5	89
45	Virtual reality enhanced Dialectical behavioural therapy. British Journal of Guidance and Counselling, 0, , 1-22.	1.2	3