Gerhard Grüber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5138944/publications.pdf

Version: 2024-02-01

174 papers 4,047 citations

32 h-index 53 g-index

174 all docs

174 docs citations

times ranked

174

3598 citing authors

#	Article	IF	Citations
1	Crystal Structure of the NS3 Protease-Helicase from Dengue Virus. Journal of Virology, 2008, 82, 173-183.	3.4	241
2	Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 857-879.	1.0	150
3	Exploiting the synthetic lethality between terminal respiratory oxidases to kill <i>Mycobacterium tuberculosis</i> and clear host infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7426-7431.	7.1	141
4	A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Letters, 2006, 580, 932-939.	2.8	114
5	The C-terminal 50 Amino Acid Residues of Dengue NS3 Protein Are Important for NS3-NS5 Interaction and Viral Replication. Journal of Biological Chemistry, 2015, 290, 2379-2394.	3.4	105
6	The Structure of the V1-ATPase Determined by Three-Dimensional Electron Microscopy of Single Particles. Journal of Structural Biology, 2001, 135, 26-37.	2.8	102
7	ATP synthases from archaea: The beauty of a molecular motor. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 940-952.	1.0	98
8	New insights into structureâ€function relationships between archeal ATP synthase (A ₁ A ₀) and vacuolar type ATPase (V ₁ V ₀). BioEssays, 2008, 30, 1096-1109.	2.5	76
9	Three-Dimensional Structure and Subunit Topology of the V ₁ ATPase from <i>Manduca sexta</i> Midgut. Biochemistry, 2000, 39, 8609-8616.	2.5	71
10	Expression, purification, and characterization of subunit E, an essential subunit of the vacuolar ATPase. Biochemical and Biophysical Research Communications, 2002, 298, 383-391.	2.1	69
11	Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11, 1661.	12.8	66
12	The plasma membrane H+-V-ATPase from tobacco hornworm midgut. Journal of Bioenergetics and Biomembranes, 1999, 31, 67-74.	2.3	65
13	Structural changes in the \hat{I}^3 and $\hat{I}\mu$ subunits of the Escherichia coli F1F0-type ATPase during energy coupling. Journal of Bioenergetics and Biomembranes, 1996, 28, 397-401.	2.3	64
14	Variations of Subunit $\hat{l}\mu$ of the Mycobacterium tuberculosis F ₁ F _o ATP Synthase and a Novel Model for Mechanism of Action of the Tuberculosis Drug TMC207. Antimicrobial Agents and Chemotherapy, 2013, 57, 168-176.	3.2	64
15	Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer. Nature Communications, 2018, 9, 5370.	12.8	64
16	Crystal Structure of the Archaeal A1AO ATP Synthase Subunit B from Methanosarcina mazei Gö1: Implications of Nucleotide-binding Differences in the Major A1AO Subunits A and B. Journal of Molecular Biology, 2006, 358, 725-740.	4.2	60
17	Structure and Subunit Arrangement of the A-type ATP Synthase Complex from the Archaeon Methanococcus jannaschii Visualized by Electron Microscopy. Journal of Biological Chemistry, 2004, 279, 38644-38648.	3.4	59
18	Bedaquiline Targets the $\hat{l}\mu$ Subunit of Mycobacterial F-ATP Synthase. Antimicrobial Agents and Chemotherapy, 2016, 60, 6977-6979.	3.2	58

#	Article	IF	CITATIONS
19	Quaternary Structure of V1and F1ATPase: Significance of Structural Homologies and Diversitiesâ€. Biochemistry, 1998, 37, 17659-17663.	2.5	56
20	Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infectious Diseases, 2017, 3, 807-819.	3.8	52
21	Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Letters, 2005, 579, 1961-1967.	2.8	51
22	Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from <i>Escherichia coli</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2848-2862.	2.5	47
23	Dual inhibition of the terminal oxidases eradicates antibioticâ€tolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	6.9	47
24	Structural analysis of the stalk subunit Vma5p of the yeast Vâ€ATPase in solution. FEBS Letters, 2004, 570, 119-125.	2.8	44
25	Deletion of a unique loop in the mycobacterial Fâ€∢scp>ATP synthase γ subunit sheds light on its inhibitory role in <scp>ATP</scp> hydrolysisâ€driven H ⁺ pumping. FEBS Journal, 2016, 283, 1947-1961.	4.7	43
26	Structural Insights into the A1 ATPase from the Archaeon, Methanosarcina mazei $G\tilde{A}\P1$. Biochemistry, 2001, 40, 1890-1896.	2.5	42
27	The N Termini of a-Subunit Isoforms Are Involved in Signaling between Vacuolar H+-ATPase (V-ATPase) and Cytohesin-2*. Journal of Biological Chemistry, 2013, 288, 5896-5913.	3.4	42
28	Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle, 2014, 13, 1912-1917.	2.6	41
29	Crystal Structure of Subunits D and F in Complex Gives Insight into Energy Transmission of the Eukaryotic V-ATPase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 3183-3196.	3.4	38
30	The <scp>NMR</scp> solution structure of <i>Mycobacterium tuberculosis</i> Fâ€ <scp>ATP</scp> synthase subunit ε provides new insight into energy coupling inside the rotary engine. FEBS Journal, 2018, 285, 1111-1128.	4.7	37
31	TBAJ-876 Retains Bedaquiline's Activity against Subunits c and ε of <i>Mycobacterium tuberculosis</i> F-ATP Synthase. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37
32	Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline. Antibiotics, 2019, 8, 261.	3.7	37
33	Pharmacological and Molecular Mechanisms Behind the Sterilizing Activity of Pyrazinamide. Trends in Pharmacological Sciences, 2019, 40, 930-940.	8.7	35
34	Structural insight and flexible features of NS5 proteins from all four serotypes of <i>Dengue virus < i>in solution. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2309-2327.</i>	2.5	34
35	Zika Virus NS5 Forms Supramolecular Nuclear Bodies That Sequester Importin-α and Modulate the Host Immune and Pro-Inflammatory Response in Neuronal Cells. ACS Infectious Diseases, 2019, 5, 932-948.	3.8	34
36	Three-dimensional Organization of the Archaeal A1-ATPase from Methanosarcina mazei $G\tilde{A}$ ¶1. Journal of Biological Chemistry, 2004, 279, 22759-22764.	3.4	33

#	Article	IF	Citations
37	Structural and functional analysis of the coupling subunit F in solution and topological arrangement of the stalk domains of the methanogenic A1AO ATP synthase. Journal of Bioenergetics and Biomembranes, 2006, 38, 83-92.	2.3	33
38	Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1398-1409.	1.0	33
39	The uniqueness of subunit $\hat{l}\pm$ of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. Journal of Biological Chemistry, 2017, 292, 11262-11279.	3.4	33
40	Cross-talk in the A1-ATPase from Methanosarcina mazei $G\tilde{A}$ ¶1 Due to Nucleotide Binding. Journal of Biological Chemistry, 2002, 277, 17327-17333.	3.4	32
41	Solution Structure and Conformational Changes of the Streptomyces Chitin-Binding Protein (CHB1). Biochemistry, 2000, 39, 10677-10683.	2.5	31
42	Abundant neuroprotective chaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid- \hat{l}^2 fibrils. Scientific Reports, 2019, 9, 12579.	3.3	31
43	Differentiation of Catalytic Sites onEscherichia coliF1ATPase by Laser Photoactivated Labeling with [3H]-2-Azido-ATP Using the Mutant βGlu381Cys:εSer108Cys To Identify Different β Subunits by Their Interactions with γ and ε Subunitsâ€. Biochemistry, 1996, 35, 3875-3879.	2.5	30
44	Nucleotide Binding States of Subunit A of the A-ATP Synthase and the Implication of P-Loop Switch in Evolution. Journal of Molecular Biology, 2010, 396, 301-320.	4.2	30
45	The Trapping of Different Conformations of the Escherichia coli F1 ATPase by Disulfide Bond Formation. Journal of Biological Chemistry, 1996, 271, 32623-32628.	3.4	29
46	Resolution of the V1 ATPase from Manduca sexta into Subcomplexes and Visualization of an ATPase-active A3B3EG Complex by Electron Microscopy. Journal of Biological Chemistry, 2003, 278, 270-275.	3.4	29
47	The Molecular Motor F-ATP Synthase Is Targeted by the Tumoricidal Protein HAMLET. Journal of Molecular Biology, 2015, 427, 1866-1874.	4.2	29
48	Disrupting coupling within mycobacterial F-ATP synthases subunit $\hat{l}\mu$ causes dysregulated energy production and cell wall biosynthesis. Scientific Reports, 2019, 9, 16759.	3.3	29
49	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie - International Edition, 2020, 59, 13295-13304.	13.8	28
50	Molecular architecture of <i>Manduca sexta</i> midgut V ₁ ATPase visualized by electron microscopy. FEBS Letters, 1999, 453, 383-386.	2.8	27
51	Crystallographic and solution structure of the Nâ€ŧerminal domain of the Rel protein from <i>Mycobacterium tuberculosis</i> . FEBS Letters, 2017, 591, 2323-2337.	2.8	27
52	NMR Solution Structure of Subunit F of the Methanogenic A1AO Adenosine Triphosphate Synthase and Its Interaction with the Nucleotide-Binding Subunit B,. Biochemistry, 2007, 46, 11684-11694.	2.5	26
53	Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles, 2011, 15, 191-202.	2.3	26
54	Low Resolution Solution Structure of HAMLET and the Importance of Its Alpha-Domains in Tumoricidal Activity. PLoS ONE, 2012, 7, e53051.	2.5	25

#	Article	IF	Citations
55	Power Stroke Angular Velocity Profiles of Archaeal A-ATP Synthase Versus Thermophilic and Mesophilic F-ATP Synthase Molecular Motors. Journal of Biological Chemistry, 2016, 291, 25351-25363.	3.4	25
56	The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. Journal of Bioenergetics and Biomembranes, 2007, 39, 275-289.	2.3	24
57	Structural features of Zika virus non-structural proteins 3 and -5 and its individual domains in solution as well as insights into NS3 inhibition. Antiviral Research, 2017, 141, 73-90.	4.1	24
58	Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A ₁ A _o ATP synthase. Proteins: Structure, Function and Bioinformatics, 2009, 75, 807-819.	2.6	22
59	Structure and subunit arrangement of Mycobacterial F1FO ATP synthase and novel features of the unique mycobacterial subunit l´. Journal of Structural Biology, 2019, 207, 199-208.	2.8	22
60	Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Progress in Biophysics and Molecular Biology, 2020, 152, 64-73.	2.9	22
61	TBAJ-876 Displays Bedaquiline-Like Mycobactericidal Potency without Retaining the Parental Drug's Uncoupler Activity. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	22
62	Structure of $\langle i \rangle$ Arabidopsis $\langle i \rangle$ CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
63	Small-Angle X-ray Scattering Reveals the Solution Structure of the Peripheral Stalk Subunit H of the A1AO ATP Synthase from Methanocaldococcus jannaschii and Its Binding to the Catalytic A Subunit. Biochemistry, 2007, 46, 2070-2078.	2.5	21
64	Key roles of the Escherichia coli AhpC C-terminus in assembly and catalysis of alkylhydroperoxide reductase, an enzyme essential for the alleviation of oxidative stress. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1932-1943.	1.0	21
65	Transition steps in peroxide reduction and a molecular switch for peroxide robustness of prokaryotic peroxiredoxins. Scientific Reports, 2016, 6, 37610.	3.3	20
66	AhpC of the mycobacterial antioxidant defense system and its interaction with its reducing partner Thioredoxin-C. Scientific Reports, 2017, 7, 5159.	3.3	20
67	Cloning, purification, and nucleotide-binding traits of the catalytic subunit A of the V1VO ATPase from Aedes albopictus. Protein Expression and Purification, 2007, 53, 378-383.	1.3	19
68	Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol. Free Radical Biology and Medicine, 2016, 97, 588-601.	2.9	19
69	Partial Intrinsic Disorder Governs the Dengue Capsid Protein Conformational Ensemble. ACS Chemical Biology, 2018, 13, 1621-1630.	3.4	18
70	8-N3-3′-Biotinyl-ATP, a Novel Monofunctional Reagent: Differences in the F1- and V1-ATPases by Means of the ATP Analogue. Biochemical and Biophysical Research Communications, 2001, 286, 1218-1227.	2.1	17
71	Defined subcomplexes of the A $<$ sub $>$ 1 $<$ /sub $>$ ATPase from the archaeon $<$ i $>$ Methanosarcina mazei $<$ /i $>$ GÃ \P 1: biochemical properties and redox regulation. FEBS Letters, 2003, 544, 206-209.	2.8	17
72	Dimer formation of subunit G of the yeast V-ATPase. FEBS Letters, 2003, 546, 395-400.	2.8	17

#	Article	lF	Citations
73	Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase. Molecular Diversity, 2021, 25, 517-524.	3.9	17
74	Structural and functional features of the Escherichia coli F1-ATPase., 2000, 32, 341-346.		16
75	Solution Structure, Determined by Nuclear Magnetic Resonance, of the b30-82 Domain of Subunit b of Escherichia coli F 1 F o ATP Synthase. Journal of Bacteriology, 2009, 191, 7538-7544.	2.2	16
76	Solution structure of subunit \hat{I}^3 (\hat{I}^3 1-204) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of \hat{I}^3 165-178, representing a novel TB drug target. Journal of Bioenergetics and Biomembranes, 2013, 45, 121-129.	2.3	16
77	Assembly of subunit d (Vma6p) and G (Vma10p) and the NMR solution structure of subunit G (G1–59) of the Saccharomyces cerevisiae V1VO ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 242-251.	1.0	14
78	The Structure of Subunit E of the Pyrococcus horikoshii OT3 A-ATP Synthase Gives Insight into the Elasticity of the Peripheral Stalk. Journal of Molecular Biology, 2012, 420, 155-163.	4.2	14
79	Identification of the critical linker residues conferring differences in the compactness of NS5 from∢i>Dengue virus∢li>serotype 4 and NS5 from∢i>Dengue virus∢li>serotypes 1–3. Acta Crystallographica Section D: Structural Biology, 2016, 72, 795-807.	2.3	14
80	Introduction: Novel insights into TB research and drug discovery. Progress in Biophysics and Molecular Biology, 2020, 152, 2-5.	2.9	14
81	Ligand-Dependent Structural Changes in the V1ATPase from Manduca sexta. Journal of Bioenergetics and Biomembranes, 2004, 36, 249-256.	2.3	12
82	ATP/ADP Binding to a Novel Nucleotide Binding Domain of the Reticulocyte-binding Protein Py235 of Plasmodium yoelii. Journal of Biological Chemistry, 2008, 283, 36386-36396.	3.4	12
83	Structural insight into the glycosylphosphatidylinositol transamidase subunits PIG-K and PIG-S from yeast. Journal of Structural Biology, 2011, 173, 271-281.	2.8	12
84	Solution structure of subunit a, a 104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. Journal of Bioenergetics and Biomembranes, 2012, 44, 341-350.	2.3	12
85	Crystallographic and solution studies of NAD+- and NADH-bound alkylhydroperoxide reductase subunit F (AhpF) from Escherichia coli provide insight into sequential enzymatic steps. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1139-1152.	1.0	12
86	Disk-like nanojets with steerable trajectory using platinum nozzle nanoengines. RSC Advances, 2016, 6, 3399-3405.	3.6	12
87	Structural features of NS3 of <i>Dengue virus</i> serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Acta Crystallographica Section D: Structural Biology, 2017, 73, 402-419.	2.3	12
88	Temperature effects on disk-like gold-nickel-platinum nanoswimmer's propulsion fuelled by hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 239, 586-596.	7.8	12
89	The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	12
90	ATP synthesis and hydrolysis of the ATP-synthase from Micrococcus luteus regulated by an inhibitor subunit and membrane energization. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1186, 43-51.	1.0	11

#	Article	IF	Citations
91	An improved purification of ECF1and ECF1F0by using a cytochromebo-deficient strain ofEscherichia colifacilitates crystallization of these complexes. FEBS Letters, 1997, 410, 165-168.	2.8	11
92	Structural Characterization of the Erythrocyte Binding Domain of the Reticulocyte Binding Protein Homologue Family of Plasmodium yoelii. Infection and Immunity, 2011, 79, 2880-2888.	2.2	11
93	Molecular mechanism of the Escherichia coli AhpC in the function of a chaperone under heat-shock conditions. Scientific Reports, 2018, 8, 14151.	3.3	11
94	Features and Functional Importance of Key Residues of the <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Infectious Diseases, 2020, 6, 1697-1707.	3.8	11
95	A systematic assessment of mycobacterial F ₁ â€ATPase subunit ε's role in latent ATPase hydrolysis. FEBS Journal, 2021, 288, 818-836.	4.7	11
96	Structure of the nucleotide-binding subunit B of the energy producer A ₁ A _O AtP synthase in complex with adenosine diphosphate. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1110-1115.	2.5	10
97	Identification of critical residues of subunitâ $\in f$ H in its interaction with subunitâ $\in f$ E of the Aâ \in ATP synthase from <i>Methanocaldococcusâ$\in f$jannaschii</i> . FEBS Journal, 2008, 275, 1803-1812.	4.7	10
98	Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Molecular Membrane Biology, 2008, 25, 400-410.	2.0	10
99	Nâ€ŧerminal domain of the Vâ€ATPase a2â€subunit displays integral membrane protein properties. Protein Science, 2010, 19, 1850-1862.	7.6	10
100	Crystal and NMR Structures Give Insights into the Role and Dynamics of Subunit F of the Eukaryotic V-ATPase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2013, 288, 11930-11939.	3.4	10
101	The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 177-187.	1.0	10
102	Low resolution solution structure of an enzymatic active AhpC 10: AhpF 2 ensemble of the Escherichia coli Alkyl hydroperoxide Reductase. Journal of Structural Biology, 2016, 193, 13-22.	2.8	10
103	Antituberculosis Activity of the Antimalaria Cytochrome <i>bcc</i> Oxidase Inhibitor SCR0911. ACS Infectious Diseases, 2020, 6, 725-737.	3.8	10
104	Low resolution structure of subunit b (b 22–156) of Escherichia coli F1FO ATP synthase in solution and the bâ~Î assembly. Journal of Bioenergetics and Biomembranes, 2008, 40, 245-55.	2.3	9
105	A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A1AO ATP synthase. Journal of Structural Biology, 2009, 166, 38-45.	2.8	9
106	Structural Determination of Functional Units of the Nucleotide Binding Domain (NBD94) of the Reticulocyte Binding Protein Py235 of Plasmodium yoelii. PLoS ONE, 2010, 5, e9146.	2.5	9
107	The NMR solution structure of subunit G (G61–101) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1961-1968.	2.6	9
108	Solution structure of subunit F (Vma7p) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 360-368.	2.6	9

#	Article	IF	Citations
109	The Transition-Like State and Pi Entrance into the Catalytic A Subunit of the Biological Engine A-ATP Synthase. Journal of Molecular Biology, 2011, 408, 736-754.	4.2	9
110	Structural elements of the C-terminal domain of subunit E (E133-222) from the Saccharomyces cerevisiae V1VO ATPase determined by solution NMR spectroscopy. Journal of Bioenergetics and Biomembranes, 2011, 43, 447-455.	2.3	9
111	Conformational Properties of Secondary Amino Acids: Replacement of Pipecolic Acid by <i>N</i> â€Methylâ€ <scp>L</scp> â€alanine in Efrapeptin C. Chemistry and Biodiversity, 2013, 10, 942-951.	2.1	9
112	Crystallographic structure of the turbine $<$ i> $<$ C $<$ /i>-ring from spinach chloroplast F-ATP synthase. Bioscience Reports, 2014, 34, .	2.4	9
113	<scp>NMR</scp> studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2 ys peroxiredoxin machinery. FEBS Journal, 2015, 282, 4620-4638.	4.7	9
114	Structural and mechanistic insights into Mycothiol Disulphide Reductase and the Mycoredoxin-1-alkylhydroperoxide reductase E assembly of Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2354-2366.	2.4	9
115	Atomic structure and enzymatic insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit C. Free Radical Biology and Medicine, 2018, 115, 252-265.	2.9	9
116	Structure and function of Mycobacterium-specific components of F-ATP synthase subunits \hat{l}_{\pm} and \hat{l}_{μ} . Journal of Structural Biology, 2018, 204, 420-434.	2.8	9
117	<i>Mycobacterium tuberculosis</i> PanD Structure–Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor. ACS Chemical Biology, 2021, 16, 1030-1039.	3.4	9
118	Interaction between subunit C (Vma5p) of the yeast vacuolar ATPase and the stalk of the C-depleted V1 ATPase from Manduca sexta midgut. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 196-200.	1.0	8
119	Hydrogen-peroxide-fuelled platinum–nickel–SU-8 microrocket with steerable propulsion using an eccentric nanoengine. RSC Advances, 2016, 6, 102513-102518.	3.6	8
120	Conformational dynamics of the rotary subunit F in the A ₃ B ₃ <scp>DF</scp> complex of <i>Methanosarcina mazei</i> Gö1 Aâ€ <scp>ATP</scp> synthase monitored by singleâ€molecule <scp>FRET</scp> . FEBS Letters, 2017, 591, 854-862.	2.8	8
121	Overexpression, purification, enzymatic and microscopic characterization of recombinant mycobacterial F-ATP synthase. Biochemical and Biophysical Research Communications, 2020, 522, 374-380.	2.1	8
122	Targeting Mycobacterial F-ATP Synthase C-Terminal \hat{l}_{\pm} Subunit Interaction Motif on Rotary Subunit \hat{l}_{3} . Antibiotics, 2021, 10, 1456.	3.7	8
123	Association of the eukaryotic V ₁ V _O ATPase subunits <i>a</i> with <i>d</i> and <i>d</i> with A. FEBS Letters, 2009, 583, 1090-1095.	2.8	7
124	Crosstalk along the Stalk: Dynamics of the Interaction of Subunits B and F in the A ₁ A _O ATP Synthase of <i>Methanosarcina mazei</i> Gö1. Biochemistry, 2010, 49, 4181-4190.	2.5	7
125	Conserved Glycine Residues in the P-Loop of ATP Synthases Form a Doorframe for Nucleotide Entrance. Journal of Molecular Biology, 2011, 413, 657-666.	4.2	7
126	NMR solution structure of subunit E (fragment E1–69) of the Saccharomyces cerevisiae V1VO ATPase. Journal of Bioenergetics and Biomembranes, 2011, 43, 187-193.	2.3	7

#	Article	IF	Citations
127	Active site CP-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins. Free Radical Biology and Medicine, 2018, 118, 59-70.	2.9	7
128	Introduction: A close look at the vacuolar ATPase. Journal of Bioenergetics and Biomembranes, 2003, 35, 277-280.	2.3	6
129	Domain Features of the Peripheral Stalk Subunit H of the Methanogenic A1AO ATP Synthase and the NMR Solution Structure of H1-47. Biophysical Journal, 2009, 97, 286-294.	0.5	6
130	The DNA uptake ATPase PilF of Thermus thermophilus: a reexamination of the zinc content. Extremophiles, 2013, 17, 697-698.	2.3	6
131	Low-resolution structure of the soluble domain GPAA1 (yGPAA170–247) of the glycosylphosphatidylinositol transamidase subunit GPAA1 from Saccharomyces cerevisiae. Bioscience Reports, 2013, 33, e00033.	2.4	6
132	Zika virus nonstructural protein 5 residue R681 is critical for dimer formation and enzymatic activity. FEBS Letters, 2019, 593, 1272-1291.	2.8	6
133	Mutational Analysis of Mycobacterial F-ATP Synthase Subunit δLeads to a Potent δEnzyme Inhibitor. ACS Chemical Biology, 2022, 17, 529-535.	3.4	6
134	Trapping of conformations of the Escherichia coliF1ATPase by disulfide bond formation. FEBS Letters, 1998, 426, 37-40.	2.8	5
135	Structural Characterization of an ATPase Active F1-/V1 -ATPase ($\hat{l}\pm3\hat{l}^23EG$) Hybrid Complex. Journal of Biological Chemistry, 2004, 279, 47866-47870.	3.4	5
136	NMR solution structure of the N-terminal domain of subunit E (E1–52) of A1AO ATP synthase from Methanocaldococcus jannaschii. Journal of Bioenergetics and Biomembranes, 2009, 41, 343-348.	2.3	5
137	Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering. Journal of Bioenergetics and Biomembranes, 2010, 42, 311-320.	2.3	5
138	Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin. Journal of Biological Chemistry, 2017, 292, 6667-6679.	3.4	5
139	Atomic solution structure of <i>Mycobacterium abscessus</i> <scp>Fâ€ATP</scp> synthase subunit ε and identification of <scp>Ep1<i>Mab</i>F1</scp> as a targeted inhibitor. FEBS Journal, 2022, 289, 6308-6323.	4.7	5
140	Purification and crystallization of the entire recombinant subunit E of the energy producer A1AoATP synthase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 324-326.	0.7	4
141	The Critical Roles of Residues P235 and F236 of Subunit A of the Motor Protein A-ATP Synthase in P-Loop Formation and Nucleotide Binding. Journal of Molecular Biology, 2010, 401, 892-905.	4.2	4
142	Binding of subunit E into the A–B interface of the A1AO ATP synthase. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2111-2118.	2.6	4
143	Structural architecture and interplay of the nucleotide- and erythrocyte binding domain of the reticulocyte binding protein Py235 from Plasmodium yoelii. International Journal for Parasitology, 2012, 42, 1083-1089.	3.1	4
144	Substrateâ€induced structural alterations of Mycobacterial mycothione reductase and critical residues involved. FEBS Letters, 2018, 592, 568-585.	2.8	4

#	Article	IF	Citations
145	Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A1 complex of the A1AO ATP synthase. Journal of Structural Biology, 2018, 201, 26-35.	2.8	4
146	The structural features of AcetobacteriumÂwoodii Fâ \in -ATP synthase reveal the importance of the unique subunit $\hat{I}^3\hat{a}\in$ loop in Na + translocation and ATP synthesis. FEBS Journal, 2019, 286, 1894-1907.	4.7	4
147	Structure and flexibility of non-structural proteins 3 and -5 of Dengue- and Zika viruses in solution. Progress in Biophysics and Molecular Biology, 2019, 143, 67-77.	2.9	4
148	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie, 2020, 132, 13397-13406.	2.0	4
149	Atomic structure of and valine binding to the regulatory ACT domain of the Mycobacterium tuberculosis Rel protein. FEBS Journal, 2021, 288, 2377-2397.	4.7	4
150	Structural model of a2-subunit N-terminus and its binding interface for Arf-GEF CTH2: Implication for regulation of V-ATPase, CTH2 function and rational drug design. Current Topics in Membranes, 2019, 83, 77-106.	0.9	4
151	Anti-Mycobacterium abscessus Activity of Tuberculosis F-ATP Synthase Inhibitor GaMF1. Antimicrobial Agents and Chemotherapy, 2022, 66, e0001822.	3.2	4
152	Structural and Mechanistic Insights into <i>Mycobacterium abscessus</i> Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infectious Diseases, 2022, 8, 1324-1335.	3.8	4
153	1H, 13C, and 15N resonance assignments of subunit F of the A1AO ATP synthase from Methanosarcina mazei Gö1. Biomolecular NMR Assignments, 2007, 1, 23-25.	0.8	3
154	NMR solution structure of NBD94483-502 of the nucleotide-binding domain of the Plasmodium yoelii reticulocyte-binding protein Py235. FEMS Microbiology Letters, 2011, 318, 152-158.	1.8	3
155	Purification and crystallization of yeast glycosylphosphatidylinositol transamidase subunit PIG-S (PIG-S71–467). Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 896-899.	0.7	3
156	Crystallization and preliminary X-ray crystallographic analysis of subunit F (F1–94), an essential coupling subunit of the eukaryotic V1VO-ATPase fromSaccharomyces cerevisiae. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1055-1059.	0.7	3
157	Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A1AO ATP synthases. Journal of Structural Biology, 2012, 180, 509-518.	2.8	3
158	Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A1AO ATP synthase of Methanosarcina mazei $G\tilde{A}$ 1. Journal of Bioenergetics and Biomembranes, 2012, 44, 213-224.	2.3	3
159	Eukaryotic V-ATPase and Its Super-complexes: From Structure and Function to Disease and Drug Targeting. , 2016, , 301-335.		3
160	Atomic structure of the regulatory TGS domain of Rel protein from Mycobacterium tuberculosis and its interaction with deacylated tRNA. FEBS Letters, 2021, 595, 3006.	2.8	3
161	The effect of NBD-Cl in nucleotide-binding of the major subunit \hat{l}_{\pm} and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase. Journal of Bioenergetics and Biomembranes, 2010, 42, 1-10.	2.3	2
162	Disulfide linkage in the coiledâ€coil domain of subunit H of A ₁ A _O ATP synthase from <i>Methanocaldococcus jannaschii</i> and the NMR structure of the Câ€terminal segment H _{85–104} . FEBS Letters, 2010, 584, 713-718.	2.8	2

#	Article	IF	CITATIONS
163	Protein–protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries. Progress in Biophysics and Molecular Biology, 2015, 119, 84-93.	2.9	2
164	Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3201-3214.	2.4	2
165	Self-association and conformational variation of NS5A domain 1 of hepatitis C virus. Journal of General Virology, 2018, 99, 194-208.	2.9	2
166	Effect of the additional cysteine 503 of vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) and the mechanism of AhpF and subunit C assembling. Free Radical Biology and Medicine, 2019, 138, 10-22.	2.9	1
167	3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Biochemical and Biophysical Research Communications, 2020, 527, 518-524.	2.1	1
168	Crystallographic insight into the catalytic mechanism of subunit A of the A-ATP synthase and the P-loop switch in evolution. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 32-33.	1.0	0
169	Crystallographic studies of the coupling segment NBD94674–781of the nucleotide-binding domain of thePlasmodium yoeliireticulocyte-binding protein Py235. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1631-1634.	0.7	О
170	Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1485-1491.	0.7	0
171	Conformational states of Zika virus non-structural protein 3 determined by molecular dynamics simulations with small-angle X-Ray scattering data. Progress in Biophysics and Molecular Biology, 2019, 143, 13-19.	2.9	0
172	Residues of helix ɑ2 are critical for catalytic efficiency of mycobacterial alkylhydroperoxide reductase subunit C. FEBS Letters, 2020, 594, 2829-2839.	2.8	0
173	Novel role of cytohesinâ€2 in regulation of macropinocytosis pathway and cell proliferation. FASEB Journal, 2013, 27, 591.8.	0.5	0
174	Analyzing conformational changes in single FRET-labeled A1 parts of archaeal A1AO-ATP synthase. , 2018, , .		O