David A Sassoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/513888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genetics, 2022, 18, e1010003.	1.5	3
2	Plateletâ€Derived Growth Factor Receptor Type α Activation Drives Pulmonary Vascular Remodeling Via Progenitor Cell Proliferation and Induces Pulmonary Hypertension. Journal of the American Heart Association, 2022, 11, e023021.	1.6	5
3	Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium. Scientific Reports, 2022, 12, .	1.6	3
4	Stem Cell Biology: Structure and Function – The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regeneration. , 2022, , .		0
5	Anti-integrin αv therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1+ stromal cells. Scientific Reports, 2020, 10, 11404.	1.6	28
6	The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal. Scientific Reports, 2018, 8, 14649.	1.6	17
7	Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle. Frontiers in Physiology, 2018, 9, 515.	1.3	11
8	FAPs are sensors for skeletal myofibre atrophy. Nature Cell Biology, 2018, 20, 864-865.	4.6	4
9	Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury. Stem Cell Research, 2018, 32, 8-16.	0.3	64
10	Does cardiac development provide heart research with novel therapeutic approaches?. F1000Research, 2018, 7, 1756.	0.8	7
11	Peg3/PW1 Is a Marker of a Subset of Vessel Associated Endothelial Progenitors. Stem Cells, 2017, 35, 1328-1340.	1.4	22
12	Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development. Nature Communications, 2017, 8, 1218.	5.8	95
13	Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells. Journal of the American College of Cardiology, 2017, 70, 728-741.	1.2	27
14	Expression Analysis of the Stem Cell Marker Pw1/Peg3 Reveals a CD34 Negative Progenitor Population in the Hair Follicle. Stem Cells, 2017, 35, 1015-1027.	1.4	13
15	Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells EnhanceÂEndogenous Repair of InjuredÂPorcine Skeletal Muscle. JACC Basic To Translational Science, 2017, 2, 717-736.	1.9	4
16	The zinc finger transcription factor PW1/PEG3 restrains murine beta cell cycling. Diabetologia, 2016, 59, 1474-1479.	2.9	5
17	Fatty acid metabolism—the first trigger for cachexia?. Nature Medicine, 2016, 22, 584-585.	15.2	4
18	Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions <i>via</i> epigenetic modulation of Scaâ€1 and Pw1 promoters. FASEB Journal, 2016, 30, 1404-1415.	0.2	6

#	Article	IF	CITATIONS
19	Resident PW1 ⁺ Progenitor Cells Participate in Vascular Remodeling During Pulmonary Arterial Hypertension. Circulation Research, 2016, 118, 822-833.	2.0	34
20	A Novel Mutant Allele of Pw1/Peg3 Does Not Affect Maternal Behavior or Nursing Behavior. PLoS Genetics, 2016, 12, e1006053.	1.5	22
21	PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Communications, 2015, 6, 6364.	5.8	120
22	The extraocular muscle stem cell niche is resistant to ageing and disease. Frontiers in Aging Neuroscience, 2014, 6, 328.	1.7	28
23	Porcine Skeletal Muscle-Derived Multipotent PW1pos/Pax7negInterstitial Cells: Isolation, Characterization, and Long-Term Culture. Stem Cells Translational Medicine, 2014, 3, 702-712.	1.6	17
24	Nâ€ <scp>WASP</scp> is required for Amphiphysinâ€2/ <scp>BIN</scp> 1â€dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Molecular Medicine, 2014, 6, 1455-1475.	3.3	87
25	Defining skeletal muscle resident progenitors and their cell fate potentials. Development (Cambridge), 2013, 140, 2879-2891.	1.2	139
26	Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Molecular Medicine, 2013, 5, 626-639.	3.3	201
27	An Unbiased Assessment of the Role of Imprinted Genes in an Intergenerational Model of Developmental Programming. PLoS Genetics, 2012, 8, e1002605.	1.5	105
28	Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle. EMBO Molecular Medicine, 2012, 4, 910-923.	3.3	35
29	Stem cells in the hood: the skeletal muscle niche. Trends in Molecular Medicine, 2012, 18, 599-606.	3.5	106
30	<i>PW1</i> gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11470-11475.	3.3	84
31	Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biology, 2010, 12, 257-266.	4.6	390
32	Skeletal Muscle Phenotypically Converts and Selectively Inhibits Metastatic Cells in Mice. PLoS ONE, 2010, 5, e9299.	1.1	26
33	A parable about environment and our daughters' health. Trends in Endocrinology and Metabolism, 2010, 21, 335-336.	3.1	1
34	Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2. Development (Cambridge), 2009, 136, 1559-1570.	1.2	63
35	Effects of p21 deletion in mouse models of premature aging. Cell Cycle, 2009, 8, 2002-2004.	1.3	11
36	Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor. PLoS ONE, 2009, 4, e5570.	1.1	39

#	Article	IF	CITATIONS
37	Tumor Necrosis Factor-Î \pm Inhibition of Skeletal Muscle Regeneration Is Mediated by a Caspase-Dependent Stem Cell Response. Stem Cells, 2008, 26, 997-1008.	1.4	65
38	PCBs Exert an Estrogenic Effect through Repression of the Wnt7a Signaling Pathway in the Female Reproductive Tract. Environmental Health Perspectives, 2006, 114, 898-904.	2.8	59
39	Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes and Development, 2006, 20, 3440-3452.	2.7	104
40	Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration. Genesis, 2005, 43, 120-128.	0.8	113
41	Diethylstilbestrol exposure in utero: A paradigm for mechanisms leading to adult disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 133-135.	1.6	21
42	Embryonic deregulation of muscle stress signaling pathways leads to altered postnatal stem cell behavior and a failure in postnatal muscle growth. Developmental Biology, 2005, 281, 171-183.	0.9	36
43	Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development (Cambridge), 2004, 131, 2061-2072.	1.2	216
44	Wnt7a Is a Suppressor of Cell Death in the Female Reproductive Tract and Is Required for Postnatal and Estrogen-Mediated Growth1. Biology of Reproduction, 2004, 71, 444-454.	1.2	54
45	A role for Wnt/β-catenin signaling in lens epithelial differentiation. Developmental Biology, 2003, 259, 48-61.	0.9	125
46	Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development (Cambridge), 2003, 130, 2375-2384.	1.2	183
47	The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development. Journal of Biological Chemistry, 2003, 278, 41420-41430.	1.6	72
48	FAP-1 Association with Fas (Apo-1) Inhibits Fas Expression on the Cell Surface. Molecular and Cellular Biology, 2003, 23, 3623-3635.	1.1	100
49	Induction of Homologue of Slimb Ubiquitin Ligase Receptor by Mitogen Signaling. Journal of Biological Chemistry, 2002, 277, 36624-36630.	1.6	48
50	TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO Journal, 2002, 21, 631-642.	3.5	93
51	Cellular and cis-regulation of En-2 expression in the mandibular arch. Mechanisms of Development, 2002, 111, 125-136.	1.7	16
52	Expression of theboc gene during murine embryogenesis. Developmental Dynamics, 2002, 223, 379-388.	0.8	43
53	Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-α signaling. Nature Structural Biology, 2002, 9, 68-75.	9.7	129
54	Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO Journal, 2002, 21, 5756-5765.	3.5	109

4

#	Article	IF	CITATIONS
55	A Role for Engrailed-2 in Determination of Skeletal Muscle Physiologic Properties. Developmental Biology, 2001, 231, 175-189.	0.9	28
56	Identification of a Novel Stretch-Responsive Skeletal Muscle Gene (Smpx). Genomics, 2001, 72, 260-271.	1.3	44
57	Developmental expression pattern of thecdo gene. Developmental Dynamics, 2000, 219, 40-49.	0.8	46
58	The emergence of molecular gynecology: homeobox and Wnt genes in the female reproductive tract. BioEssays, 2000, 22, 902-910.	1.2	57
59	Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2105-2110.	3.3	151
60	ldentification of Ankrd2, a Novel Skeletal Muscle Gene Coding for a Stretch-Responsive Ankyrin-Repeat Protein. Genomics, 2000, 66, 229-241.	1.3	115
61	Wnt genes and endocrine disruption of the female reproductive tract: a genetic approach. Molecular and Cellular Endocrinology, 1999, 158, 1-5.	1.6	49
62	Fetal exposure to DES results in de-regulation of Wnt7a during uterine morphogenesis. Nature Genetics, 1998, 20, 228-230.	9.4	146
63	Peg3/Pw1 is an imprinted gene involved in the TNF-NFκB signal transduction pathway. Nature Genetics, 1998, 18, 287-291.	9.4	148
64	Msh homeobox genes regulate cadherin-mediated cell adhesion and cell–cell sorting. , 1998, 70, 22-28.		28
65	Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle. Mechanisms of Development, 1998, 76, 91-99.	1.7	150
66	CDO, A Robo-related Cell Surface Protein that Mediates Myogenic Differentiation. Journal of Cell Biology, 1998, 143, 403-413.	2.3	86
67	Msx2 Is a Transcriptional Regulator in the BMP4-Mediated Programmed Cell Death Pathway. Developmental Biology, 1997, 186, 127-138.	0.9	143
68	Pw1, a Novel Zinc Finger Gene Implicated in the Myogenic and Neuronal Lineages. Developmental Biology, 1996, 177, 383-396.	0.9	135
69	MSX1 inhibits MyoD expression in fibroblast × 10T½ cell hybrids. Cell, 1995, 82, 611-620.	13.5	141
70	Ectoderm-Mesenchyme and Mesenchyme-Mesenchyme Interactions Regulate Msx-1 Expression and Cellular Differentiation in the Murine Limb Bud. Developmental Biology, 1995, 168, 374-382.	0.9	100
71	Restricted expression of type-II TGFβ receptor in murine embryonic development suggests a central role in tissue modeling and CNS patterning. Mechanisms of Development, 1995, 52, 275-289.	1.7	42
72	Myogenic Regulatory Factors: Dissecting Their Role and Regulation during Vertebrate Embryogenesis. Developmental Biology, 1993, 156, 11-23.	0.9	146

#	Article	IF	CITATIONS
73	[24] Detection of messenger RNA by in Situ hybridization. Methods in Enzymology, 1993, 225, 384-404.	0.4	118
74	Hox Genes: A Role for Tissue Development. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 1-2.	1.4	2
75	Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop Genes and Development, 1992, 6, 2235-2247.	2.7	328
76	In-Situ Hybridization of Tropoelastin mRNA during the Development of the Multilayered Neonatal Rat Aortic Smooth Muscle Cell Culture. Matrix Biology, 1992, 12, 321-332.	1.8	19
77	A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell, 1992, 69, 79-93.	13.5	79
78	Molecular aspects of regeneration in developing vertebrate limbs. Developmental Biology, 1992, 152, 37-49.	0.9	94
79	Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature, 1992, 360, 477-481.	13.7	215
80	Multiple sites of HOX-7 expression during mouse embryogenesis: Comparison with retinoic acid receptor mRNA localization. Molecular Reproduction and Development, 1992, 32, 303-314.	1.0	55
81	ld expression during mouse development: A role in morphogenesis. Developmental Dynamics, 1992, 194, 222-230.	0.8	56
82	Myogenesis in the Mouse. Novartis Foundation Symposium, 1992, 165, 111-131.	1.2	12
83	Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Developmental Biology, 1991, 147, 144-156.	0.9	274
84	The expression of myosin genes in developing skeletal muscle in the mouse embryo Journal of Cell Biology, 1990, 111, 1465-1476.	2.3	259
85	Developmental regulation of myosin gene expression in mouse cardiac muscle Journal of Cell Biology, 1990, 111, 2427-2436.	2.3	381
86	Expression of two myogenic regulatory factors myogenin and MyoDl during mouse embryogenesis. Nature, 1989, 341, 303-307.	13.7	647
87	Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989, 56, 607-617.	13.5	1,248
88	The protein encoded by a murine male germ cell-specific transcript is a putative ATP-dependent RNA helicase. Cell, 1989, 57, 549-559.	13.5	167
89	A developmental study of the abnormal expression of α-cardiac and α-skeletal actins in the striated muscle of a mutant mouse. Developmental Biology, 1989, 134, 236-245.	0.9	36
90	Development and hormone regulation of androgen receptor levels in the sexually dimorphic larynx of Xenopus laevis. Developmental Biology, 1989, 131, 111-118.	0.9	51

#	Article	IF	CITATIONS
91	Androgen-induced myogenesis and chondrogenesis in the larynx of Xenopus laevis. Developmental Biology, 1986, 113, 135-140.	0.9	71
92	The sexually dimorphic larynx ofXenopus laevis: Development and androgen regulation. American Journal of Anatomy, 1986, 177, 457-472.	0.9	108