
John P Bloomfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5138622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 2006, 369, 163-177.	3.9	278
2	Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 2013, 17, 4769-4787.	1.9	274
3	Climate change and water in the UK – past changes and future prospects. Progress in Physical Geography, 2015, 39, 6-28.	1.4	178
4	Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. Journal of Hydrology, 2009, 373, 164-176.	2.3	141
5	A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment, 2011, 409, 2859-2873.	3.9	130
6	The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environmental Geochemistry and Health, 2013, 35, 667-681.	1.8	92
7	Regional analysis of groundwater droughts using hydrograph classification. Hydrology and Earth System Sciences, 2015, 19, 4327-4344.	1.9	91
8	Identificação de respostas não estacionárias dos nÃveis de água subterrânea aos padrões de teleconexão oceano-atmosfera no Atl¢ntico Norte, utilizando a coerência de onduletas. Hydrogeology Journal, 2011, 19, 1269-1278.	0.9	89
9	CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain. Earth System Science Data, 2020, 12, 2459-2483.	3.7	87
10	Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrological Processes, 2012, 26, 226-239.	1.1	81
11	Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. Journal of Hydrology, 1996, 184, 355-379.	2.3	80
12	Flood risk from groundwater: examples from a Chalk catchment in southern England. Journal of Flood Risk Management, 2011, 4, 143-155.	1.6	68
13	Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year. Hydrology and Earth System Sciences, 2015, 19, 2353-2375.	1.9	66
14	Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000Âcatchments in Great Britain. Hydrology and Earth System Sciences, 2019, 23, 4011-4032.	1.9	63
15	Changes in groundwater drought associated with anthropogenic warming. Hydrology and Earth System Sciences, 2019, 23, 1393-1408.	1.9	59
16	Karstic behaviour of groundwater in the English Chalk. Journal of Hydrology, 2006, 330, 63-70.	2.3	56
17	Sediment filled fractures in the Permo-Triassic sandstones of the Cheshire Basin: observations and implications for pollutant transport. Journal of Contaminant Hydrology, 2001, 50, 41-51.	1.6	51
18	Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. Journal of Hydrology, 2006, 330, 53-62.	2.3	50

JOHN P BLOOMFIELD

#	Article	IF	CITATIONS
19	Some relationships between lithology, basin form and hydrology: a case study from the Thames basin, UK. Hydrological Processes, 2011, 25, 2518-2530.	1.1	50
20	Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 2018, 564, 397-413.	2.3	46
21	Which catchment characteristics control the temporal dependence structure of daily river flows?. Hydrological Processes, 2015, 29, 1353-1369.	1.1	45
22	Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales. Hydrological Sciences Journal, 2017, 62, 2753-2768.	1.2	45
23	Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. Journal of Hydrology, 2010, 393, 362-369.	2.3	43
24	Correlating mechanical data with microstructural observations in deformation experiments on synthetic two-phase aggregates. Journal of Structural Geology, 1993, 15, 1007-1019.	1.0	42
25	Understanding the potential of climate teleconnections to project future groundwater drought. Hydrology and Earth System Sciences, 2019, 23, 3233-3245.	1.9	37
26	Evidence for changes in historic and future groundwater levels in the UK. Progress in Physical Geography, 2015, 39, 49-67.	1.4	34
27	A conceptual model for climatic teleconnection signal control on groundwater variability in Europe. Earth-Science Reviews, 2018, 177, 164-174.	4.0	31
28	Improved understanding of spatioâ€ŧemporal controls on regional scale groundwater flooding using hydrograph analysis and impulse response functions. Hydrological Processes, 2017, 31, 4586-4599.	1.1	28
29	Stygobitic Invertebrates in Groundwater — A Review from a Hydrogeological Perspective. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2012, 5, 51-71.	1.0	27
30	A geospatial framework to support integrated biogeochemical modelling in the United Kingdom. Environmental Modelling and Software, 2015, 68, 219-232.	1.9	26
31	A framework for a joint hydro-meteorological-social analysis of drought. Science of the Total Environment, 2017, 578, 297-306.	3.9	25
32	A conceptual model for the analysis of multi-stressors in linked groundwater–surface water systems. Science of the Total Environment, 2018, 627, 880-895.	3.9	25
33	Asymmetric impact of groundwater use on groundwater droughts. Hydrology and Earth System Sciences, 2020, 24, 4853-4868.	1.9	25
34	Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. Journal of Hydrology, 2017, 549, 715-730.	2.3	24
35	Modeling fracture porosity development using simple growth laws. Ground Water, 2005, 43, 314-326.	0.7	23
36	Linking North Atlantic ocean–atmosphere teleconnection patterns and hydrogeological responses in temperate groundwater systems. Hydrological Processes, 2009, 23, 3123-3126.	1.1	23

JOHN P BLOOMFIELD

#	Article	IF	CITATIONS
37	An early warning system for groundwater flooding in the Chalk. Quarterly Journal of Engineering Geology and Hydrogeology, 2010, 43, 185-193.	0.8	23
38	Reconstruction of multiâ€decadal groundwater level timeâ€series using a lumped conceptual model. Hydrological Processes, 2016, 30, 3107-3125.	1.1	23
39	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	1.1	22
40	Controls on the basin-scale distribution of hydraulic conductivity of superficial deposits: a case study from the Thames Basin, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 223-236.	0.8	17
41	Quantifying uncertainty in predictions of groundwater levels using formal likelihood methods. Journal of Hydrology, 2016, 540, 699-711.	2.3	17
42	Characterization of permeability distributions in six lithofacies from the Helsby and Wilmslow sandstone formations of the Cheshire Basin, UK. Geological Society Special Publication, 2006, 263, 83-101.	0.8	15
43	Obligate groundwater crustaceans mediate biofilm interactions in a subsurface food web. Freshwater Science, 2019, 38, 491-502.	0.9	15
44	Towards a better understanding of tetrachloroethene entry pressure in the matrix of Permo-Triassic sandstones. Journal of Contaminant Hydrology, 2002, 59, 247-265.	1.6	11
45	Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow. Hydrology and Earth System Sciences, 2021, 25, 2223-2237.	1.9	11
46	How is Baseflow IndexÂ(BFI) impacted by water resource management practices?. Hydrology and Earth System Sciences, 2021, 25, 5355-5379.	1.9	11
47	The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa. Hydrogeology Journal, 2021, 29, 2773-2787.	0.9	10
48	Evaluating integrated water management strategies to inform hydrological drought mitigation. Natural Hazards and Earth System Sciences, 2021, 21, 3113-3139.	1.5	10
49	Using variograms to detect and attribute hydrological change. Hydrology and Earth System Sciences, 2015, 19, 2395-2408.	1.9	9
50	Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK). Hydrogeology Journal, 2018, 26, 1975-1987.	0.9	9
51	Nonâ€stationary control of the <scp>NAO</scp> on European rainfall and its implications for water resource management. Hydrological Processes, 2021, 35, e14099.	1.1	9
52	Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK). Hydrogeology Journal, 2017, 25, 2453-2466.	0.9	8
53	The Groundwater Drought Initiative (GDI): Analysing and understanding groundwater drought across Europe. Proceedings of the International Association of Hydrological Sciences, 0, 383, 297-305.	1.0	7
54	Analysis of the impact of hydraulic properties and climate change on estimations of borehole yields. Journal of Hydrology, 2019, 577, 123998.	2.3	5

#	Article	IF	CITATIONS
55	The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought. Hydrology and Earth System Sciences, 2022, 26, 2449-2467.	1.9	3
56	Fractal domain refinement of models simulating hydrological time series. Hydrological Sciences Journal, 2022, 67, 1342-1355.	1.2	0