## Michael Günther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5138107/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Where Have the Dead Gone?. Frontiers in Medicine, 2022, 9, 837287.                                                                                                                                                            | 1.2 | 0         |
| 2  | Muscle active force-length curve explained by an electrophysical model of interfilament spacing.<br>Biophysical Journal, 2022, 121, 1823-1855.                                                                                | 0.2 | 12        |
| 3  | A geometry- and muscle-based control architecture for synthesising biological movement. Biological<br>Cybernetics, 2021, 115, 7-37.                                                                                           | 0.6 | 7         |
| 4  | Rules of nature's Formula Run: Muscle mechanics during late stance is the key to explaining maximum running speed. Journal of Theoretical Biology, 2021, 523, 110714.                                                         | 0.8 | 9         |
| 5  | Giraffes and hominins: reductionist model predictions of compressive loads at the spine base for erect exponents of the animal kingdom. Biology Open, 2021, 10, .                                                             | 0.6 | 0         |
| 6  | Cross-bridge mechanics estimated from skeletal muscles' work-loop responses to impacts in legged<br>locomotion. Scientific Reports, 2021, 11, 23638.                                                                          | 1.6 | 2         |
| 7  | Exhaustion of Skeletal Muscle Fibers Within Seconds: Incorporating Phosphate Kinetics Into a<br>Hill-Type Model. Frontiers in Physiology, 2020, 11, 306.                                                                      | 1.3 | 14        |
| 8  | Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs.<br>Robotic Pointing and Walking. Frontiers in Robotics and AI, 2020, 7, 77.                                                      | 2.0 | 20        |
| 9  | Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a<br>passively flexed lumbar spine. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2015-2047.                       | 1.4 | 23        |
| 10 | The dynamics of the skeletal muscle: A systems biophysics perspective on muscle modeling with the focus on Hillâ€ŧype muscle models. GAMM Mitteilungen, 2019, 42, e201900013.                                                 | 2.7 | 24        |
| 11 | Tailoring anatomical muscle paths: a sheath-like solution for muscle routing in musculoskeletal computer models. Mathematical Biosciences, 2019, 311, 68-81.                                                                  | 0.9 | 29        |
| 12 | Bioinspired pneumatic muscle spring units mimicking the human motion apparatus: benefits for passive motion range and joint stiffness variation in antagonistic setups. , 2018, , .                                           |     | 9         |
| 13 | On Laterally Perturbed Human Stance: Experiment, Model, and Control. Applied Bionics and Biomechanics, 2018, 2018, 1-20.                                                                                                      | 0.5 | 2         |
| 14 | The basic mechanical structure of the skeletal muscle machinery: One model for linking microscopic and macroscopic scales. Journal of Theoretical Biology, 2018, 456, 137-167.                                                | 0.8 | 15        |
| 15 | Inter-filament spacing mediates calcium binding to troponin: A simple geometric-mechanistic model<br>explains the shift of force-length maxima with muscle activation. Journal of Theoretical Biology, 2018,<br>454, 240-252. | 0.8 | 24        |
| 16 | The influence of biophysical muscle properties on simulating fast human arm movements. Computer<br>Methods in Biomechanics and Biomedical Engineering, 2017, 20, 803-821.                                                     | 0.9 | 41        |
| 17 | Hill equation and Hatze's muscle activation dynamics complement each other: enhanced pharmacological and physiological interpretability of modelled activity-pCa curves. Journal of Theoretical Biology, 2017, 431, 11-24.    | 0.8 | 19        |
| 18 | Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.<br>Scientific Reports, 2017, 7, 13266.                                                                                          | 1.6 | 11        |

Michael Günther

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | How to model a muscle's active force–length relation: A comparative study. Computer Methods in<br>Applied Mechanics and Engineering, 2017, 313, 321-336.                                                         | 3.4 | 16        |
| 20 | Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments. Mathematical Biosciences, 2016, 278, 77-93.                                                   | 0.9 | 23        |
| 21 | Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.<br>Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 819-834.                                     | 0.9 | 13        |
| 22 | Requirements and limits of anatomy-based predictions of locomotion in terrestrial arthropods with emphasis on arachnids. Journal of Paleontology, 2015, 89, 980-990.                                             | 0.5 | 16        |
| 23 | Comparative Sensitivity Analysis of Muscle Activation Dynamics. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-16.                                                                            | 0.7 | 46        |
| 24 | A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of<br>intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 2015, 14,<br>1081-1105. | 1.4 | 66        |
| 25 | Impulsive ankle push-off powers leg swing in human walking. Journal of Experimental Biology, 2014, 217, 1218-28.                                                                                                 | 0.8 | 68        |
| 26 | Quantifying control effort of biological and technical movements: An information-entropy-based approach. Physical Review E, 2014, 89, 012716.                                                                    | 0.8 | 61        |
| 27 | Impulsive ankle push-off powers leg swing in human walking. Journal of Experimental Biology, 2014, 217, 1831-1831.                                                                                               | 0.8 | 34        |
| 28 | An enhanced model of cross-bridge operation with internal elasticity. European Biophysics Journal, 2014, 43, 131-141.                                                                                            | 1.2 | 7         |
| 29 | Hill-type muscle model with serial damping and eccentric force–velocity relation. Journal of<br>Biomechanics, 2014, 47, 1531-1536.                                                                               | 0.9 | 136       |
| 30 | Muscle force depends on the amount of transversal muscle loading. Journal of Biomechanics, 2014,<br>47, 1822-1828.                                                                                               | 0.9 | 63        |
| 31 | Theoretical Hill-Type Muscle and Stability: Numerical Model and Application. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-7.                                                                | 0.7 | 7         |
| 32 | Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-13.                                                           | 0.7 | 32        |
| 33 | ELECTRO-MECHANICAL DELAY IN HILL-TYPE MUSCLE MODELS. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250085.                                                                                            | 0.3 | 58        |
| 34 | Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. Bioinspiration and Biomimetics, 2012, 7, 036022.                                                                       | 1.5 | 18        |
| 35 | Hydraulic leg extension is not necessarily the main drive in large spiders. Journal of Experimental Biology, 2012, 215, 578-583.                                                                                 | 0.8 | 27        |
| 36 | Proof of Concept: Model Based Bionic Muscle with Hyperbolic Force-Velocity Relation. Applied Bionics and Biomechanics, 2012, 9, 267-274.                                                                         | 0.5 | 8         |

MICHAEL GÃ<sup>1</sup>/4NTHER

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Can Quick Release Experiments Reveal the Muscle Structure? A Bionic Approach. Journal of Bionic Engineering, 2012, 9, 211-223.                                  | 2.7 | 13        |
| 38 | A model-experiment comparison of system dynamics for human walking and running. Journal of<br>Theoretical Biology, 2012, 292, 11-17.                            | 0.8 | 77        |
| 39 | Climbing in hexapods: A plain model for heavy slopes. Journal of Theoretical Biology, 2012, 293, 82-86.                                                         | 0.8 | 11        |
| 40 | A 3D-geometric model for the deformation of a transversally loaded muscle. Journal of Theoretical Biology, 2012, 298, 116-121.                                  | 0.8 | 22        |
| 41 | What does head movement tell about the minimum number of mechanical degrees of freedom in quiet human stance?. Archive of Applied Mechanics, 2012, 82, 333-344. | 1.2 | 8         |
| 42 | Proof of concept of an artificial muscle: Theoretical model, numerical model, and hardware experiment. , 2011, 2011, 5975336.                                   |     | 3         |
| 43 | Phase synchronisation of the three leg joints in quiet human stance. Gait and Posture, 2011, 33, 412-417.                                                       | 0.6 | 24        |
| 44 | Watching quiet human stance to shake off its straitjacket. Archive of Applied Mechanics, 2011, 81, 283-302.                                                     | 1.2 | 18        |
| 45 | Human leg impact: energy dissipation of wobbling masses. Archive of Applied Mechanics, 2011, 81, 887-897.                                                       | 1.2 | 45        |
| 46 | The load distribution among three legs on the wall: model predictions for cockroaches. Archive of Applied Mechanics, 2011, 81, 1269-1287.                       | 1.2 | 10        |
| 47 | A macroscopic ansatz to deduce the Hill relation. Journal of Theoretical Biology, 2010, 263, 407-418.                                                           | 0.8 | 25        |
| 48 | A simple new device to examine human stance: the totter-slab. Biomedizinische Technik, 2010, 55, 27-38.                                                         | 0.9 | 2         |
| 49 | Diverging times in movement analysis. Journal of Biomechanics, 2009, 42, 786-788.                                                                               | 0.9 | 7         |
| 50 | All leg joints contribute to quiet human stance: A mechanical analysis. Journal of Biomechanics, 2009,<br>42, 2739-2746.                                        | 0.9 | 64        |
| 51 | Transverse pelvic rotation during quiet human stance. Gait and Posture, 2008, 27, 361-367.                                                                      | 0.6 | 7         |
| 52 | Running on uneven ground: leg adjustment to vertical steps and self-stability. Journal of Experimental<br>Biology, 2008, 211, 2989-3000.                        | 0.8 | 107       |
| 53 | Intelligence by mechanics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 199-220.                           | 1.6 | 183       |
| 54 | High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.<br>Biological Cybernetics, 2007, 97, 63-79.                | 0.6 | 84        |

Michael Günther

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Robust Behaviour of the Human Leg. , 2006, , 5-16.                                                                                                  |     | 1         |
| 56 | Energieabsorption, Energiespeicherung und Arbeit bei schneller Lokomotion über unebenes Terrain. ,<br>2005, , 71-96.                                |     | 0         |
| 57 | JOINT ENERGY BALANCES: THE COMMITMENT TO THE SYNCHRONIZATION OF MEASURING SYSTEMS. Journal of Mechanics in Medicine and Biology, 2005, 05, 139-149. | 0.3 | 5         |
| 58 | Human leg design: optimal axial alignment under constraints. Journal of Mathematical Biology, 2004,<br>48, 623-646.                                 | 0.8 | 38        |
| 59 | Synthesis of two-dimensional human walking: a test of the ?-model. Biological Cybernetics, 2003, 89, 89-106.                                        | 0.6 | 111       |
| 60 | DEALING WITH SKIN MOTION AND WOBBLING MASSES IN INVERSE DYNAMICS. Journal of Mechanics in Medicine and Biology, 2003, 03, 309-335.                  | 0.3 | 66        |
| 61 | A movement criterion for running. Journal of Biomechanics, 2002, 35, 649-655.                                                                       | 0.9 | 410       |
| 62 | Joint stiffness of the ankle and the knee in running. Journal of Biomechanics, 2002, 35, 1459-1474.                                                 | 0.9 | 169       |
| 63 | Stable operation of an elastic three-segment leg. Biological Cybernetics, 2001, 84, 365-382.                                                        | 0.6 | 96        |