Tingwei He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5137795/publications.pdf Version: 2024-02-01

TINCWELHE

#	Article	IF	CITATIONS
1	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
2	Li-Doped Chemical Bath Deposited SnO ₂ Enables Efficient Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 5340-5347.	2.5	9
3	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
4	Metal Halide Perovskites for Redâ€Emission Lightâ€Emitting Diodes. Small Structures, 2022, 3, .	6.9	15
5	Scalable Assembly of Flexible Ultrathin Allâ€inâ€One Zincâ€ion Batteries with Highly Stretchable, Editable, and Customizable Functions. Advanced Materials, 2021, 33, e2008140.	11.1	106
6	Multiexciton state of singlet fission in triisopropylsilylethynylâ€pentacene. Microwave and Optical Technology Letters, 2021, 63, 1399-1405.	0.9	1
7	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	5.8	274
8	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
9	Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 2593-2606.	2.1	52
10	High-performance large-area quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 2207.	5.8	173
11	Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. CheM, 2021, 7, 3131-3143.	5.8	55
12	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	7.1	1
13	Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 336.	5.8	237
14	Hard and soft Lewis-base behavior for efficient and stable CsPbBr ₃ perovskite light-emitting diodes. Nanophotonics, 2021, 10, 2157-2166.	2.9	16
15	Modulating geometric, electronic, gas sensing and catalytic properties of single-atom Pd supported on divacancy and N-doped graphene sheets. Applied Surface Science, 2020, 508, 145245.	3.1	34
16	CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Solar Energy, 2020, 195, 436-445.	2.9	42
17	Multifunctional Naphthol Sulfonic Salt Incorporated in Lead-Free 2D Tin Halide Perovskite for Red Light-Emitting Diodes. ACS Photonics, 2020, 7, 1915-1922.	3.2	52
18	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69

Tingwei He

#	Article	IF	CITATIONS
19	Tuning Surface Wettability of Buffer Layers by Incorporating Polyethylene Glycols for Enhanced Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 26670-26679.	4.0	20
20	Direct Observation of Competition between Amplified Spontaneous Emission and Auger Recombination in Quasi-Two-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 5734-5740.	2.1	28
21	High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212, 110555.	3.0	36
22	Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nature Communications, 2020, 11, 1672.	5.8	191
23	Metal halide perovskites for blue light emitting materials. APL Materials, 2020, 8, .	2.2	15
24	Formation Mechanism, Geometric Stability and Catalytic Activity of a Single Iron Atom Supported on Nâ€Đoped Graphene. ChemPhysChem, 2019, 20, 2506-2517.	1.0	14
25	Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials. Journal of Alloys and Compounds, 2019, 808, 151476.	2.8	30
26	Aâ€site Cation Engineering for Highly Efficient MAPbI ₃ Singleâ€Crystal Xâ€ray Detector. Angewandte Chemie - International Edition, 2019, 58, 17834-17842.	7.2	174
27	Aâ€site Cation Engineering for Highly Efficient MAPbl ₃ Single rystal Xâ€ray Detector. Angewandte Chemie, 2019, 131, 17998-18006.	1.6	15
28	Orientation Regulation of Tinâ€Based Reducedâ€Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Advanced Functional Materials, 2019, 29, 1807696.	7.8	136
29	Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10, 1868.	5.8	344
30	Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells. Science China Chemistry, 2019, 62, 629-636.	4.2	43
31	Lead sulfide films synthesized by microwave-assisted chemical bath deposition method as efficient counter electrodes for CdS/CdSe sensitized ZnO nanorod solar cells. Solar Energy, 2019, 177, 672-678.	2.9	8
32	Conjugated Alkylamine by Two‣tep Surface Ligand Engineering in CsPbBr 3 Perovskite Nanocrystals for Efficient Lightâ€Emitting Diodes. ChemNanoMat, 2019, 5, 318-322.	1.5	14
33	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	5.2	70
34	The stable perovskite solar cell prepared by rapidly annealing perovskite film with water additive in ambient air. Solar Energy Materials and Solar Cells, 2018, 176, 280-287.	3.0	22
35	Solvent engineering approach via introducing poly (3, 4-ethylene dioxy-thiophene)–poly (styrene) Tj ETQq1 1 (efficient inverted planar perovskite solar cells. Solar Energy, 2018, 176, 1-9.).784314 2.9	rgBT /Overlo 12
36	Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. Journal of Power Sources, 2018, 401, 303-311.	4.0	19

Tingwei He

#	Article	IF	CITATIONS
37	Reduced-Dimensional α-CsPbX3 Perovskites for Efficient and Stable Photovoltaics. Joule, 2018, 2, 1356-1368.	11.7	344
38	Planar perovskite FAxMA1-xPbI3 solar cell by two-step deposition method in air ambient. Optical Materials, 2018, 85, 55-60.	1.7	16
39	Structural, electronic and catalytic performances of single-atom Fe stabilized by divacancy-nitrogen-doped graphene. RSC Advances, 2017, 7, 7920-7928.	1.7	36
40	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	1.7	23
41	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	1.7	30
42	The Influence of ZnO Nanorod Length and Counter Electrode Material on the Photovoltaic Properties of CdS/CdSe Quantum Dots Cosensitized ZnO Nanorods Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1653-1662.	1.5	8
43	Efficient and stable perovskite solar cells based on high-quality CH ₃ NH ₃ PbI _{3â^*x} Cl _x films modified by V ₂ O _x additives. Journal of Materials Chemistry A, 2017, 5, 24282-24291.	5.2	27
44	Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon, 2014, 71, 139-149.	5.4	85