Sreeprasad T Sreenivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5137582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room temperature synthesis of UO _{2+<i>x</i>} nanocrystals and thin films <i>via</i> hydrolysis of uranium(<scp>iv</scp>) complexes. Inorganic Chemistry Frontiers, 2022, 9, 678-685.	3.0	3
2	Diazonium functionalized fullerenes: a new class of efficient molecular catalysts for the hydrogen evolution reaction. Nanoscale, 2022, 14, 3858-3864.	2.8	12
3	Cylindrical C ₉₆ Fullertubes: A Highly Active Metalâ€Free O ₂ â€Reduction Electrocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
4	A double-edged effect of manganese-doped graphene quantum dots on salt-stressed Capsicum annuum L Science of the Total Environment, 2022, 844, 157160.	3.9	7
5	Synthesis, characterization, and applications of graphene quantum dots. , 2021, , 247-297.		0
6	Electronic Structure, Chemical Bonding, and Electrocatalytic Activity of Ba(Fe _{0.7} Ta _{0.3})O _{3â^î^} Compounds. ACS Applied Energy Materials, 2021, 4, 1313-1322.	2.5	14
7	Co–Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 4064-4073.	6.6	175
8	A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M ₃ N@C _{2<i>n</i>} (2 <i>n</i> = 68, 78, and 80) Fullerenes. Journal of the American Chemical Society, 2021, 143, 6037-6042.	6.6	37
9	Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS Applied Materials & Interfaces, 2021, 13, 40731-40741.	4.0	26
10	Interfacial Phase Modulation-Induced Structural Distortion, Band Gap Reduction, and Nonlinear Optical Activity in Tin-Incorporated Ga ₂ O ₃ . Journal of Physical Chemistry C, 2021, 125, 20468-20481.	1.5	18
11	Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access, 2021, 9, 140654-140666.	2.6	17
12	MXene-Based Tailoring of Carrier Dynamics, Defect Passivation, and Interfacial Band Alignment for Efficient Planar p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12137-12148.	2.5	23
13	Crystal Chemistry, Band-Gap Red Shift, and Electrocatalytic Activity of Iron-Doped Gallium Oxide Ceramics. ACS Omega, 2020, 5, 104-112.	1.6	45
14	Metal-Organic frameworks-derived multifunctional carbon encapsulated metallic nanocatalysts for catalytic peroxymonosulfate activation and electrochemical hydrogen generation. Molecular Catalysis, 2020, 498, 111241.	1.0	13
15	Tailoring the Interfacial Interactions of van der Waals 1T-MoS ₂ /C ₆₀ Heterostructures for High-Performance Hydrogen Evolution Reaction Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 17923-17927.	6.6	112
16	Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions. Journal of the American Chemical Society, 2020, 142, 14688-14701.	6.6	231
17	In Situ Doping-Enabled Metal and Nonmetal Codoping in Graphene Quantum Dots: Synthesis and Application for Contaminant Sensing. ACS Sustainable Chemistry and Engineering, 2020, 8, 16565-16576.	3.2	32

18 Influence of Carbon Quantum Dots on the Biome. Processes, 2020, 8, 445.

1.3 9

#	Article	IF	CITATIONS
19	Untangling the Potential of Carbon Quantum Dots in Neurodegenerative Disease. Processes, 2020, 8, 599.	1.3	8
20	Chitosan–Ellagic Acid Nanohybrid for Mitigating Rotenone-induced Oxidative Stress. ACS Applied Materials & Interfaces, 2020, 12, 18964-18977.	4.0	26
21	Effect of Titanium Induced Chemical Inhomogeneity on Crystal Structure, Electronic Structure, and Optical Properties of Wide Band Gap Ga ₂ O ₃ . Crystal Growth and Design, 2020, 20, 1422-1433.	1.4	21
22	Nanoscopic Portrait of an Amyloidogenic Pathway Visualized through Tip-Enhanced Raman Spectroscopy. ACS Chemical Neuroscience, 2019, 10, 3343-3345.	1.7	6
23	Learnings from Protein Folding Projected onto Amyloid Misfolding. ACS Chemical Neuroscience, 2019, 10, 3911-3913.	1.7	5
24	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
25	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
26	Sustainable Animal Protein-Intermeshed Epoxy Hybrid Polymers: From Conquering Challenges to Engineering Properties. ACS Omega, 2018, 3, 14361-14370.	1.6	3
27	Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems. ACS Applied Materials & Interfaces, 2017, 9, 989-998.	4.0	24
28	Morphogenesis of cement hydrate. Journal of Materials Chemistry A, 2017, 5, 3798-3811.	5.2	45
29	Retained Carrier-Mobility and Enhanced Plasmonic-Photovoltaics of Graphene via ring-centered η ⁶ Functionalization and Nanointerfacing. Nano Letters, 2017, 17, 4381-4389.	4.5	39
30	Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria. ACS Nano, 2016, 10, 8403-8412.	7.3	35
31	Electrical Transport and Network Percolation in Graphene and Boron Nitride Mixed-Platelet Structures. ACS Applied Materials & Interfaces, 2016, 8, 8721-8727.	4.0	18
32	Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale, 2016, 8, 17919-17927.	2.8	141
33	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
34	Biomimetic self-cleaning surfaces: synthesis, mechanism and applications. Journal of the Royal Society Interface, 2016, 13, 20160300.	1.5	86
35	Facile synthesis of copper doped carbon dots and their application as a "turn-off―fluorescent probe in the detection of Fe ³⁺ ions. RSC Advances, 2016, 6, 28745-28750.	1.7	75
36	Synthesis and Characterization of a Walnut Peptides–Zinc Complex and Its Antiproliferative Activity against Human Breast Carcinoma Cells through the Induction of Apoptosis. Journal of Agricultural and Food Chemistry, 2016, 64, 1509-1519.	2.4	57

#	Article	IF	CITATIONS
37	Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale, 2015, 7, 10883-10895.	2.8	68
38	Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorganic Chemistry Frontiers, 2015, 2, 417-424.	3.0	118
39	Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot. Scientific Reports, 2015, 5, 9138.	1.6	27
40	Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C, 2015, 3, 9885-9893.	2.7	154
41	Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification. Journal of Hazardous Materials, 2013, 246-247, 213-220.	6.5	63
42	Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS ₂ via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Letters, 2013, 13, 4434-4441.	4.5	281
43	How Do the Electrical Properties of Graphene Change with its Functionalization?. Small, 2013, 9, 341-350.	5.2	287
44	Electron-Tunneling Modulation in Percolating Network of Graphene Quantum Dots: Fabrication, Phenomenological Understanding, and Humidity/Pressure Sensing Applications. Nano Letters, 2013, 13, 1757-1763.	4.5	126
45	Covalent Functionalization of Dipoleâ€Modulating Molecules on Trilayer Graphene: An Avenue for Grapheneâ€Interfaced Molecular Machines. Small, 2013, 9, 3823-3828.	5.2	24
46	Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides. Small, 2013, 9, 273-283.	5.2	196
47	Noble Metal Nanoparticles. , 2013, , 303-388.		31
48	Graphene from Sugar and its Application in Water Purification. ACS Applied Materials & Interfaces, 2012, 4, 4156-4163.	4.0	216
49	EFFECT OF NANOSCALE ZINC OXIDE PARTICLES ON THE GERMINATION, GROWTH AND YIELD OF PEANUT. Journal of Plant Nutrition, 2012, 35, 905-927.	0.9	754
50	GRAPHENE FOR ENVIRONMENTAL AND BIOLOGICAL APPLICATIONS. International Journal of Modern Physics B, 2012, 26, 1242001.	1.0	38
51	Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size. Nature Communications, 2012, 3, 844.	5.8	163
52	Synthesis and Characterization of Amphiphilic Reduced Graphene Oxide with Epoxidized Methyl Oleate. Advanced Materials, 2012, 24, 2123-2129.	11.1	25
53	Reversible Assembly and Disassembly of Gold Nanorods Induced by EDTA and Its Application in SERS Tuning. Langmuir, 2011, 27, 3381-3390.	1.6	81
54	Tubular Nanostructures of Cr2Te4O11and Mn2TeO6through Room-Temperature Chemical Transformations of Tellurium Nanowires, Journal of Physical Chemistry C, 2011, 115, 16524-16536	1.5	6

#	Article	IF	CITATIONS
55	Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 2011, 110, .	1.1	169
56	Transparent, Luminescent, Antibacterial and Patternable Film Forming Composites of Graphene Oxide/Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2011, 3, 2643-2654.	4.0	113
57	Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews, 2011, 2, 5883.	3.7	373
58	Reduced graphene oxide–metal/metal oxide composites: Facile synthesis and application in water purification. Journal of Hazardous Materials, 2011, 186, 921-931.	6.5	477
59	Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods. Journal of Nanoparticle Research, 2010, 12, 1777-1786.	0.8	54
60	Probing the Initial Stages of Molecular Organization of Oligo(<i>p</i> â€phenylenevinylene) Assemblies with Monolayer Protected Gold Nanoparticles. Chemistry - an Asian Journal, 2009, 4, 840-848.	1.7	40
61	Tellurium Nanowire-Induced Room Temperature Conversion of Graphite Oxide to Leaf-like Graphenic Structures. Journal of Physical Chemistry C, 2009, 113, 1727-1737.	1.5	76
62	Bending and Shell Formation of Tellurium Nanowires Induced by Thiols. Chemistry of Materials, 2009, 21, 4527-4540.	3.2	22
63	Size tuning of Au nanoparticles formed by electron beam irradiation of Au25 quantum clusters anchored within and outside of dipeptide nanotubes. Journal of Materials Chemistry, 2009, 19, 8456.	6.7	55
64	Reactivity and resizing of gold nanorods in presence of Cu2+. Bulletin of Materials Science, 2008, 31, 219-224.	0.8	9
65	Wires, Plates, Flowers, Needles, and Coreâ^'Shells:  Diverse Nanostructures of Gold Using Polyaniline Templates. Langmuir, 2008, 24, 4607-4614.	1.6	67
66	One-, Two-, and Three-Dimensional Superstructures of Gold Nanorods Induced by Dimercaptosuccinic Acid. Langmuir, 2008, 24, 4589-4599.	1.6	76
67	Visible Fluorescence Induced by the Metal Semiconductor Transition in Composites of Carbon Nanotubes with Noble Metal Nanoparticles. Physical Review Letters, 2007, 99, 167404.	2.9	34
68	Gold Nanorods Grown on Microgels Leading to Hexagonal Nanostructures. Langmuir, 2007, 23, 8667-8669.	1.6	27
69	Hemoprotein Bioconjugates of Gold and Silver Nanoparticles and Gold Nanorods:Â Structureâ^'Function Correlations. Langmuir, 2007, 23, 1320-1325.	1.6	67
70	Body- or Tip-Controlled Reactivity of Gold Nanorods and Their Conversion to Particles through Other Anisotropic Structures. Langmuir, 2007, 23, 9463-9471.	1.6	85
71		1.6	3