Charles C Sorrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5137482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Stealth Engineering of Lifetime-Biocatalytic Nanocatalyst for Neuroblastoma Therapy. Applied Surface Science, 2022, 572, 151464.	6.1	4
2	The Formation of a New Phase during Crystallization of TiO ₂ -Doped Nd ₂ O ₃ -Al ₂ O ₃ -SiO ₂ Classes. Transactions of the Indian Ceramic Society, 2022, 81, 22-29.	1.0	1
3	Density Functional Theory Investigation of the Biocatalytic Mechanisms of pH-Driven Biomimetic Behavior in CeO ₂ . ACS Applied Materials & Interfaces, 2022, 14, 11937-11949.	8.0	21
4	Non-blockage of atomic-scale active sites in photocatalytic TiO2 thin films deposited on silica-based substrates. Materials Chemistry and Physics, 2022, , 126148.	4.0	0
5	Anticancer therapeutic effect of cerium-based nanoparticles: known and unknown molecular mechanisms. Biomaterials Science, 2022, 10, 3671-3694.	5.4	20
6	Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. Polymer Reviews, 2021, 61, 357-414.	10.9	38
7	Design strategies for ceria nanomaterials: untangling key mechanistic concepts. Materials Horizons, 2021, 8, 102-123.	12.2	44
8	Mechanistic impacts of long-term gamma irradiation on physicochemical, structural, and mechanical stabilities of radiation-responsive geopolymer pastes. Journal of Hazardous Materials, 2021, 407, 124805.	12.4	13
9	Highly Mesoporous Hybrid Transition Metal Oxide Nanowires for Enhanced Adsorption of Rare Earth Elements from Wastewater. Inorganic Chemistry, 2021, 60, 175-184.	4.0	5
10	Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. Materials Science and Engineering C, 2021, 120, 111663.	7.3	4
11	Long-Term Strength Evolution in Ambient-Cured Solid-Activator Geopolymer Compositions. Minerals (Basel, Switzerland), 2021, 11, 143.	2.0	9
12	Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews, 2021, 50, 10116-10211.	38.1	140
13	Fly Ash Utilisation in Mullite Fabrication: Development of Novel Percolated Mullite. Minerals (Basel,) Tj ETQq1 1 0	.784314 r 2.0	gBT /Overloo
14	Development of Low-Alkali, Fly Ash/Slag Geopolymers: Predictive Strength Modelling and Analyses of Impact of Curing Temperatures. Minerals (Basel, Switzerland), 2021, 11, 60.	2.0	2
15	Highly catalytically active CeO _{2â^x} -based heterojunction nanostructures with mixed micro/meso-porous architectures. Nanoscale, 2021, 13, 6764-6771.	5.6	16
16	Fucoidan- and carrageenan-based biosynthetic poly(vinyl alcohol) hydrogels for controlled permeation. Materials Science and Engineering C, 2021, 121, 111821.	7.3	6
17	Synthesis and Structure-Chirality Relationship Analysis of Steroidal Quinoxalines to Design and Develop New Chiral Drugs. Chemistry, 2021, 3, 402-410.	2.2	2
18	Mo-doped, Cr-Doped, and Mo–Cr codoped TiO2 thin-film photocatalysts by comparative sol-gel spin coating and ion implantation. International Journal of Hydrogen Energy, 2021, 46, 12961-12980.	7.1	13

#	Article	IF	CITATIONS
19	Decoupling the Impacts of Engineering Defects and Band Gap Alignment Mechanism on the Catalytic Performance of Holey 2D CeO _{2â~} <i>_x</i> â€Based Heterojunctions. Advanced Functional Materials, 2021, 31, 2103171.	14.9	27
20	Quiescent Mineralisation for Free-standing Mineral Microfilms with a Hybrid Structure. Journal of Colloid and Interface Science, 2021, 604, 327-339.	9.4	3
21	Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Advanced Functional Materials, 2021, 31, 2104199.	14.9	33
22	Dynamic Mineralization: Lowâ€Temperature, Rapid, and Multidirectional Process to Encapsulate Polyetherâ€Etherâ€Ketone with Carbonateâ€Rich Hydroxyapatite for Osseointegration. Advanced Materials Interfaces, 2021, 8, 2100333.	3.7	4
23	Dynamic Mineralization: Lowâ€Temperature, Rapid, and Multidirectional Process to Encapsulate Polyetherâ€Etherâ€Ketone with Carbonateâ€Rich Hydroxyapatite for Osseointegration (Adv. Mater.) Tj ETQq1 1	0. 38 4314	⊦rg₿T /Overl
24	Phase assemblage and microstructures of Gd2Ti2-xZrxO7 (x = 0.1–0.3) pyrochlore glass-ceramics as potential waste forms for actinide immobilization. Materials Chemistry and Physics, 2021, 273, 125058.	4.0	9
25	Na0.5Bi0.5TiO3 phase relations: Thermodynamics and phase equilibria in the systems Bi2O3 – TiO2, Na2O – TiO2, and Na2O – Bi2O3 – TiO2. Journal of the European Ceramic Society, 2021, 41, 7005-7013.	5.7	5
26	Solid solubility and charge compensation/exchange mechanisms in Ga- or Mn-Doped CeO2 thin films on 3D printed biomedical titanium alloy. Materials Chemistry and Physics, 2021, 277, 125483.	4.0	3
27	Role of Oxygen Vacancy Ordering and Channel Formation in Tuning Intercalation Pseudocapacitance in Mo Single-Ion-Implanted CeO _{2–<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2021, 13, 59820-59833.	8.0	11
28	Enhancement of CeO ₂ Silanization by Spontaneous Breakage of Si–O Bonds through Facet Engineering. Journal of Physical Chemistry C, 2020, 124, 2644-2655.	3.1	8
29	Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates. Journal of Materials Science, 2020, 55, 3774-3794.	3.7	13
30	Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydrate Polymers, 2020, 230, 115691.	10.2	40
31	Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies, 2020, 13, 6335.	3.1	7
32	Predictive Model of Setting Times and Compressive Strengths for Low-Alkali, Ambient-Cured, Fly Ash/Slag-Based Geopolymers. Minerals (Basel, Switzerland), 2020, 10, 920.	2.0	19
33	Assembly of cerium-based coordination polymer into variant polycrystalline 2D–3D CeO2â^x nanostructures. Journal of Materials Chemistry A, 2020, 8, 4753-4763.	10.3	20
34	Assessment of electrocatalytic activity through the lens of three surface area normalization techniques. Journal of Materials Chemistry A, 2020, 8, 3154-3159.	10.3	69
35	Band gap engineering of Ce-doped anatase TiO ₂ through solid solubility mechanisms and new defect equilibria formalism. Nanoscale, 2020, 12, 4916-4934.	5.6	37
36	Contamination of TiO2 thin films spin coated on rutile and soda–lime–silica substrates. Journal of Materials Science, 2020, 55, 8061-8087.	3.7	5

#	Article	IF	CITATIONS
37	Properties and performance of photocatalytic CeO2, TiO2, and CeO2–TiO2 layered thin films. Ceramics International, 2019, 45, 22085-22094.	4.8	18
38	DFT Study of Methanol Adsorption on Defectâ€Free CeO ₂ Lowâ€Index Surfaces. ChemPhysChem, 2019, 20, 2074-2081.	2.1	20
39	Coordination Polymer to Atomically Thin, Holey, Metalâ€Oxide Nanosheets for Tuning Band Alignment. Advanced Materials, 2019, 31, e1905288.	21.0	31
40	Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2â^'x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10, 2594.	12.8	75
41	Surface, Subsurface, and Bulk Oxygen Vacancies Quantified by Decoupling and Deconvolution of the Defect Structure of Redox-Active Nanoceria. Inorganic Chemistry, 2019, 58, 6016-6027.	4.0	32
42	Structural and Microstructural Effects of Mo ³⁺ /Mo ⁵⁺ Codoping on Properties and Photocatalytic Performance of Nanostructured TiO ₂ Thin Films. Journal of Physical Chemistry C, 2019, 123, 11781-11790.	3.1	22
43	lonic interdiffusion as interaction mechanism between Al and Si 3 N 4. Journal of the American Ceramic Society, 2019, 102, 4835-4847.	3.8	6
44	Intervalence charge transfer and thermodynamic effects on the photocatalytic performance of Fe/Mo single and codoped TiO2 thin films. SN Applied Sciences, 2019, 1, 1.	2.9	4
45	2D Materials: Coordination Polymer to Atomically Thin, Holey, Metalâ€Oxide Nanosheets for Tuning Band Alignment (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970370.	21.0	3
46	Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping. Journal of Materials Science, 2019, 54, 5266-5279.	3.7	32
47	Manipulation of Charge Transport by Metallic V ₁₃ O ₁₆ Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204.	21.0	57
48	Effect of precursor dopant valence state on the photocatalytic performance of Mo3+- or Mo5+-Doped TiO2 thin films. Journal of Physics and Chemistry of Solids, 2019, 126, 314-321.	4.0	15
49	Production Levels of Bauxite and Aluminum: Global Historical Survey (1850â \in "2015). , 2019, , .		0
50	Engineering oxygen vacancies through construction of morphology maps for bio-responsive nanoceria for osteosarcoma therapy. CrystEngComm, 2018, 20, 1536-1545.	2.6	25
51	pH-Responsive Morphology-Controlled Redox Behavior and Cellular Uptake of Nanoceria in Fibrosarcoma. ACS Biomaterials Science and Engineering, 2018, 4, 1064-1072.	5.2	26
52	Planar-dependent oxygen vacancy concentrations in photocatalytic CeO ₂ nanoparticles. CrystEngComm, 2018, 20, 204-212.	2.6	24
53	Potential Use of Ambient-Cured Geopolymers for Intermediate Level Nuclear Waste Storage. MRS Advances, 2018, 3, 1123-1131.	0.9	3
54	Photocatalytic antimicrobial films on fluorinated contact lens polymers. Materials Letters, 2018, 212, 134-138.	2.6	6

#	Article	IF	CITATIONS
55	Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. Journal of Prosthetic Dentistry, 2018, 119, 36-46.	2.8	168
56	Effect of doping on the properties and photocatalytic performance of titania thin films on glass substrates: Single-ion doping with Cobalt or Molybdenum. Materials Chemistry and Physics, 2018, 205, 334-346.	4.0	31
57	Mulliteâ€glass and mulliteâ€mullite interfaces: Analysis by molecular dynamics (<scp>MD</scp>) simulation and highâ€resolution <scp>TEM</scp> . Journal of the American Ceramic Society, 2018, 101, 428-439.	3.8	11
58	Deconvolution of dopant-derived extrinsic and intrinsic effects in TiO2 nanoparticulate thin films. New Journal of Chemistry, 2018, 42, 19685-19691.	2.8	2
59	Anterior Lumbar Interbody Fusion Using Reaction Bonded Silicon Nitride Implants: Long-Term Case Series of the First Synthetic Anterior Lumbar Interbody Fusion Spacer Implanted in Humans. World Neurosurgery, 2018, 120, 256-264.	1.3	19
60	Critical role of {002} preferred orientation on electronic band structure of electrodeposited monoclinic WO ₃ thin films. Sustainable Energy and Fuels, 2018, 2, 2224-2236.	4.9	24
61	Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO ₂ Nanoparticles through Sol–Gel versus Pechini Syntheses. Inorganic Chemistry, 2018, 57, 7279-7289.	4.0	34
62	Anorthite (CaAl2Si2O8)–aluminum interface: kinetics of high-temperature interactions. Journal of Materials Science, 2017, 52, 6767-6777.	3.7	5
63	Effect of Ce-doping on the photocatalytic performance of TiO2 thin films. Materials Chemistry and Physics, 2017, 197, 236-239.	4.0	14
64	Photocatalytic activity of V-doped TiO2 thin films for the degradation of methylene blue and rhodamine B dye solutions. Journal of the Australian Ceramic Society, 2017, 53, 569-576.	1.9	23
65	Growth mechanism of ceria nanorods by precipitation at room temperature and morphology-dependent photocatalytic performance. CrystEngComm, 2017, 19, 4766-4776.	2.6	34
66	Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 2017, 325, 340-366.	12.4	276
67	Aqueous and Surface Chemistries of Photocatalytic Fe-Doped CeO2 Nanoparticles. Catalysts, 2017, 7, 45.	3.5	54
68	Effect of iron doping on the structural and optical properties of CeO2 films. Journal of Sol-Gel Science and Technology, 2016, 79, 51-58.	2.4	7
69	Interfacial reactions between Al7075 alloy and BaAl ₂ Si ₂ O ₈ + CaAl ₂ Si ₂ O ₈ mixture. Philosophical Magazine, 2016, 96, 3711-3734.	1.6	3
70	Effects of precipitation, liquid formation, and intervalence charge transfer on the properties and photocatalytic performance of cobalt- or vanadium-doped TiO2 thin films. International Journal of Hydrogen Energy, 2016, 41, 19025-19056.	7.1	40
71	Multivalence Charge Transfer in Doped and Codoped Photocatalytic TiO ₂ . Inorganic Chemistry, 2016, 55, 8071-8081.	4.0	29
72	Photocatalytic Activation of TiO ₂ Biomaterials by UV and X-Rays. Advances in Science and Technology, 2016, 99, 22-30.	0.2	2

#	Article	IF	CITATIONS
73	General model for comparative tensile mechanical properties of composites fabricated from fly ash and virgin/recycled high-density polyethylene. Polymer Engineering and Science, 2016, 56, 1096-1108.	3.1	17
74	Interfacial Reactions Between BaAl2Si2O8 and Molten Al Alloy at 1423ÂK and 1523ÂK (1150°C and 1250°C Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1753-1764.	C). 2.1	4
75	Effects of chemical nature of polyvinyl alcohol on early hydration of Portland cement. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1439-1450.	3.6	9
76	Interfacial Reactions Between Anorthite (CaAl ₂ Si ₂ O ₈) and Al 7075 Alloy at 850°C and 1150°C. Journal of the American Ceramic Society, 2016, 99, 1694-1708.	3.8	5
77	Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. Journal of Materials Science, 2016, 51, 2465-2480.	3.7	26
78	Effects of acetic acid on early hydration of Portland cement. Journal of Thermal Analysis and Calorimetry, 2016, 123, 489-499.	3.6	20
79	Interfacial Reactions Between BaAl ₂ Si ₂ O ₈ and Molten Al Alloy at 850°C. Journal of the American Ceramic Society, 2015, 98, 3299-3307.	3.8	11
80	The Anatase Formation on Anodised Titanium in Sulphuric Acid. Advanced Materials Research, 2015, 1087, 334-339.	0.3	2
81	Corrosion Investigation of Duplex Stainless Steels in Chlorinated Solutions. Steel Research International, 2015, 86, 1022-1027.	1.8	7
82	Effect of intervalence charge transfer on photocatalytic performance of cobalt- and vanadium-codoped TiO2 thin films. International Journal of Hydrogen Energy, 2015, 40, 16215-16229.	7.1	49
83	Impact of water-soluble cellulose ethers on polymer-modified mortars. Journal of Materials Science, 2014, 49, 923-951.	3.7	24
84	Sand Supported Mixedâ€ <scp>P</scp> hase Ti <scp>O</scp> ₂ Photocatalysts for Water Decontamination Applications. Advanced Engineering Materials, 2014, 16, 248-254.	3.5	49
85	Ab initio study of phase stability in doped TiO2. Computational Mechanics, 2012, 50, 185-194.	4.0	78
86	Surface Modification of Titanium Dioxide Thin Films via Manganese Doping. E-Journal of Surface Science and Nanotechnology, 2012, 10, 103-106.	0.4	4
87	Fe-doped and Mn-doped titanium dioxide thin films. Journal of Sol-Gel Science and Technology, 2012, 61, 175-178.	2.4	25
88	Enhancement of flux pinning in GdBa2Cu3O7â^'y bulks prepared by nanoparticle-powder-assisted method. Journal of Modern Transportation, 2011, 19, 104-109.	2.5	1
89	Review of the anatase to rutile phase transformation. Journal of Materials Science, 2011, 46, 855-874.	3.7	2,530
90	Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. Journal of Coatings Technology Research, 2010, 7, 665-676.	2.5	53

#	Article	IF	CITATIONS
91	Effect of annealing temperature on titania thin films prepared by spin coating. Journal of Sol-Gel Science and Technology, 2010, 55, 328-334.	2.4	35
92	Deposition rate of anatase films by ultrasonic spray pyrolysis. Advances in Applied Ceramics, 2010, 109, 196-199.	1.1	6
93	Coating methods for self-cleaning thick films of titania. Advances in Applied Ceramics, 2007, 106, 105-112.	1.1	16
94	Effect of sintering on microstructure of TiO2ceramics. Advances in Applied Ceramics, 2007, 106, 57-62.	1.1	9
95	Titanium vacancies in nonstoichiometric TiO2 single crystal. Physica Status Solidi (B): Basic Research, 2005, 242, R88-R90.	1.5	76
96	Segregation in zirconia: equilibrium versus non-equilibrium segregation. Surface and Interface Analysis, 2005, 37, 316-324.	1.8	28
97	Charge transport in CaTiO ₃ : I. Electrical conductivity. Journal of Materials Science: Materials in Electronics, 2004, 15, 635-644.	2.2	21
98	Charge transport in CaTiO ₃ : II. Thermoelectric power. Journal of Materials Science: Materials in Electronics, 2004, 15, 645-650.	2.2	9
99	Charge transport in CaTiO ₃ : III. Jonker analysis. Journal of Materials Science: Materials in Electronics, 2004, 15, 651-656.	2.2	7
100	Electronic and ionic conductivity in CaTiO3. Ionics, 2004, 10, 334-342.	2.4	13
101	Thermoelectric power of mixed electronic-ionic conductors I. Basic equations. Ionics, 2004, 10, 159-165.	2.4	6
102	Thermoelectric power of mixed electronic-ionic conductors II. Case of titanium dioxide. Ionics, 2004, 10, 166-176.	2.4	4
103	Thermoelectric power of mixed electronic-ionic conductors III. Case of calcium titanate. Ionics, 2004, 10, 177-187.	2.4	2
104	Synthetic spinel-forsterite refractory aggregates from the sillimanite minerals. Mining, Metallurgy and Exploration, 2003, 20, 143-152.	0.8	0
105	Grain Boundary Diffusion of Magnesium in Zirconia. Journal of the American Ceramic Society, 2002, 85, 2244-2250.	3.8	43
106	Electrical conductivity of indium sesquioxide thin film. Journal of Materials Science: Materials in Electronics, 2002, 13, 571-579.	2.2	9
107	Defect chemistry and semiconducting properties of calcium titanate. Journal of Materials Science: Materials in Electronics, 2002, 13, 697-704.	2.2	26
108	Development of novel materials through interface engineering. Ionics, 2001, 7, 241-246.	2.4	0

#	Article	IF	CITATIONS
109	Properties of TiO2 as photoelectrode for hydrogen generation using solar energy. lonics, 2001, 7, 272-274.	2.4	2
110	Electrical properties of Cr-doped CoO. Ionics, 2001, 7, 351-359.	2.4	3
111	Defect chemistry and electrical properties of La1-xSrxCoO3-Î′. lonics, 2001, 7, 360-369.	2.4	10
112	Defect chemistry and electrical properties of La1-xSrxCoO3-l´. lonics, 2001, 7, 370-379.	2.4	6
113	Defect chemistry and electrical properties of La1â^xSrxCoO3â^1́ III. Oxygen nonstoichiometry. Ionics, 2001, 7, 380-387.	2.4	11
114	Defect chemistry and electrical properties of La1â^'xSrxCoO3â^'δ IV. Electrical properties. Ionics, 2001, 7, 388-393.	2.4	6
115	Semiconducting properties of CoO thin films. Ionics, 2001, 7, 394-399.	2.4	4
116	Properties of the electrode material LixCoO2. Ionics, 2000, 6, 92-106.	2.4	10
117	Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. , 1999, 45, 11.		1
118	Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. , 1999, 45, 11.		1
119	Solution ripening of hydroxyapatite nanoparticles: Effects on electrophoretic deposition. Journal of Biomedical Materials Research Part B, 1999, 45, 11-19.	3.1	2
120	Alumina Platelets from Topaz–zirconia Mixtures. Journal of Materials Science Letters, 1998, 17, 2087-2088.	0.5	9
121	Effect of Surface Preparation of Zirconia on its Reactivity with Oxygen. Journal of Materials Synthesis and Processing, 1998, 6, 373-377.	0.3	1
122	Work Function of PbZrO3. Journal of Materials Synthesis and Processing, 1998, 6, 335-338.	0.3	4
123	Surface electrical properties of Gd-doped PbZrO3. Ionics, 1998, 4, 72-81.	2.4	2
124	Thixotropic casting of ceramic-metal functionally gradient materials. Journal of Materials Science, 1996, 31, 4347-4355.	3.7	24
125	The effects of Y2BaCuO5 substrate on the melt textured growth of YBa2Cu3O7-δ crystals. Physica Status Solidi A, 1996, 156, 175-185.	1.7	3
126	Superconductivity and Structural Transition in Moâ€Stabilised R _{1–<i>x</i>} Ca _{<i>x</i>} Sr ₂ Cu ₃ O _y Compounds (R = Pr, Nd, and Y). Physica Status Solidi (B): Basic Research, 1995, 190, 523-530.	1.5	2

4

#	Article	IF	CITATIONS
127	On high temperature mechanical and fracture properties of an Al2O3/SiC w ceramic matrix composite. Journal of Materials Science Letters, 1994, 13, 817-820.	0.5	3
128	Effect of Hot-Pressing on the BiPbSrCaCuO System. Journal of the American Ceramic Society, 1991, 74, 2577-2582.	3.8	18
129	Alignment of YBa2Cu3O7-x and AgYBa2Cu3O7-x Composites at ~930oC by Eutectic Formation. Journal of the American Ceramic Society, 1991, 74, 1541-1546.	3.8	27
130	Critical currents in silverâ€sheathed (Bi,Pb)2Sr2Ca2Cu3O10â^'ysuperconducting tapes. Applied Physics Letters, 1991, 59, 3171-3173.	3.3	21
131	Liquid Formation at the Peritectic Temperature in Superconducting YBa2Cu3O7-x-Observation of a New Phase YBa4CuAlO8. Journal of the American Ceramic Society, 1990, 73, 2147-2150.	3.8	6
132	Rapid Formation of the 110 K Phase in BI-Pb-Sr-Ca-Cu-O through Freeze-Drying Powder Processing. Journal of the American Ceramic Society, 1990, 73, 1771-1773.	3.8	38
133	Effect of silver addition on superconductivity in the Bi1.6Pb0.4Sr1.6Ca2Cu3O10?y system. Journal of Materials Science: Materials in Electronics, 1990, 1, 30-33.	2.2	10
134	Superconductivity in a Agâ€doped Biâ€Pb‣râ€Caâ€Cuâ€O system. Applied Physics Letters, 1990, 56, 493-494.	3.3	46
135	Chemistry of Bismuth-Based High-TcSuperconductors. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 184, 51-59.	0.3	0
136	Twins, kinks and cracks in dense superconducting YBa2Cu3O7â^'x. Journal of Materials Science Letters, 1989, 8, 1147-1150.	0.5	6
137	Superlattices in Pb-doped Bi-Sr-Ca-Cu-O and in a non-superconducting Sr-Ca-Cu-O precursor. Philosophical Magazine Letters, 1989, 59, 213-217.	1.2	2
138	Dependence of the Superconducting Transition Temperature on Radii of Alkali and Alkaline Earth Dopants in Y ₁ Ba ₂ Cu ₃ O _{7â^'x} . Physica Status Solidi (B): Basic Research, 1988, 147, K153.	1.5	7
139	Effect of Milling Medium on the Properties of Superconducting YBa2Cu3O7-x. Journal of the American Ceramic Society, 1988, 71, C-329-C-331.	3.8	13
140	Twin structures, transformation and symmetry of superconducting Y1Ba2Cu3O7–x, observed by transmission electron microscopy. Philosophical Magazine Letters, 1988, 57, 157-163.	1.2	12
141	Exaggerated grain growth and improved properties of Y1Ba2Cu3O7-xby Pt addition. Philosophical Magazine Letters, 1988, 57, 149-153.	1.2	8
142	Superlattices and stacking faults in Bi ₂ (Sr,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 142 Td (Ca) ₃	Cu	₂
143	Mechanical Properties of ZrC-ZrB2 and ZrC-TiB2 Directionally Solidified Eutectics. Journal of the American Ceramic Society, 1986, 69, 317-321.	3.8	57

144 Gel Oxidation of Titanium for Biomedical Application. Advanced Materials Research, 0, 620, 122-126. 0.3

#	Article	IF	CITATIONS
145	Tribute to Eric Raymond (Lou) Vance (15th November, 1942–7th March, 2019). Journal of the Australian Ceramic Society, 0, , 1.	1.9	о
146	Microstructural Characterization and Mechanical Properties of AA5083 Aluminum to AISI 1018 Steel Welds by Electro Spark Microwelding. Advances in Materials and Processing Technologies, 0, , 1-13.	1.4	0
147	Production of Antibacterial Activity and Bone Cell Proliferation by Surface Engineering of Ga―or Mnâ€Doped Ceriaâ€Coated Biomedical Titanium Alloy. Advanced Engineering Materials, 0, , 2200077.	3.5	3
148	Morphological Mapping of Hydrothermally Synthesised Nanoceria at High Ce Concentrations. ChemNanoMat, 0, , .	2.8	1