Meysam Sarshar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136720/publications.pdf Version: 2024-02-01

MEVENM SADSHAD

#	Article	IF	CITATIONS
1	Adaptive strategies of uropathogenic Escherichia coli CFT073: from growth in lab media to virulence during host cell adhesion. International Microbiology, 2022, , 1.	1.1	4
2	The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). Journal of Immunology Research, 2022, 2022, 1-25.	0.9	31
3	Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates. International Journal of Environmental Research and Public Health, 2022, 19, 2870.	1.2	4
4	Biomarkers to Monitor Adherence to Gluten-Free Diet by Celiac Disease Patients: Gluten Immunogenic Peptides and Urinary miRNAs. Foods, 2022, 11, 1380.	1.9	5
5	SARS-CoV-2: Comparative analysis of different RNA extraction methods. Journal of Virological Methods, 2021, 287, 114008.	1.0	51
6	Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens, 2021, 10, 387.	1.2	92
7	Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms, 2021, 9, 1353.	1.6	30
8	Protective Effect of HLA-E*0101/*0103 Genotype in Survival of Patients After Allogeneic Hematopoietic Stem Cell Transplant. Experimental and Clinical Transplantation, 2021, 19, 849-855.	0.2	1
9	Urinary tract infections: Can we prevent uropathogenic <i>Escherichia coli</i> infection with dietary intervention?. International Journal for Vitamin and Nutrition Research, 2021, 91, 391-395.	0.6	5
10	FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics, 2020, 9, 397.	1.5	73
11	Fecal microRNAs as Innovative Biomarkers of Intestinal Diseases and Effective Players in Host-Microbiome Interactions. Cancers, 2020, 12, 2174.	1.7	36
12	The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. International Journal of Environmental Research and Public Health, 2020, 17, 5648.	1.2	49
13	d-Mannose Treatment neither Affects Uropathogenic Escherichia coli Properties nor Induces Stable FimH Modifications. Molecules, 2020, 25, 316.	1.7	43
14	Optimization of activin-A: a breakthrough in differentiation of human induced pluripotent stem cell into definitive endoderm. 3 Biotech, 2020, 10, 215.	1.1	10
15	Acinetobacter baumannii Targets Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules (CEACAMs) for Invasion of Pneumocytes. MSystems, 2020, 5, .	1.7	20
16	Insights into the Periplasmic Proteins of Acinetobacter baumannii AB5075 and the Impact of Imipenem Exposure: A Proteomic Approach. International Journal of Molecular Sciences, 2019, 20, 3451.	1.8	12
17	A simple, fast and reliable scan-based technique as a novel approach to quantify intracellular bacteria. BMC Microbiology, 2019, 19, 252.	1.3	4
18	Colonic adenoma-associated Escherichia coli express specific phenotypes. Microbes and Infection, 2019, 21, 305-312.	1.0	18

MEYSAM SARSHAR

#	Article	IF	CITATIONS
19	Genetic diversity, phylogroup distribution and virulence gene profile of pks positive Escherichia coli colonizing human intestinal polyps. Microbial Pathogenesis, 2017, 112, 274-278.	1.3	28
20	Microbiota-Derived Extracellular Vesicles as New Systemic Regulators. Frontiers in Microbiology, 2017, 8, 1610.	1.5	96
21	Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electronic Physician, 2017, 9, 4405-4411.	0.2	7
22	Simultaneous Molecular Detection of Serovars Typhi, Enteritidis, Infantis, and Typhimurium. Iranian Journal of Public Health, 2017, 46, 103-111.	0.3	10
23	Simultaneous Detection of Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus by Oligonucleotide Microarray. International Journal of Enteric Pathogens, 2015, 3, .	0.2	1
24	The study of the oipA and dupA genes in Helicobacter pylori strains and their relationship with different gastroduodenal diseases. Gastroenterology and Hepatology From Bed To Bench, 2015, 8, S47-53.	0.6	13
25	Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran. Iranian Journal of Pharmaceutical Research, 2015, 14, 1257-62.	0.3	16
26	The Phylum Spirochaetaceae. , 2014, , 915-929.		16
27	Uropathogenic Escherichia coli in Iran: Serogroup distributions, virulence factors and antimicrobial resistance properties. Annals of Clinical Microbiology and Antimicrobials, 2013, 12, 8.	1.7	146
28	Serogroups, virulence genes and antibiotic resistance in Shiga toxin-producing Escherichia coli isolated from diarrheic and non-diarrheic pediatric patients in Iran. Gut Pathogens, 2013, 5, 39.	1.6	46
29	Genetic Analysis of cagA and vacA Genes in Helicobacter Pylori Isolates and Their Relationship with Gastroduodenal Diseases in the West of Iran. Iranian Red Crescent Medical Journal, 2013, 15, 371-6.	0.5	22
30	Study of <i>Helicobacter pylori</i> genotype status in saliva, dental plaques, stool and gastric biopsy samples. World Journal of Gastroenterology, 2012, 18, 2105.	1.4	90
31	PP-005 Clarithromycin resistance assessment in Helicobacter pylori isolates by using 23S rRNA gene molecular markers. International Journal of Infectious Diseases, 2011, 15, S47.	1.5	0
32	PP-007 Multiplex PCR assay for rapid determination of bla TEM, bla SHV and bla CTX- M genes in diarrheagenic Escherichia coli isolated from Iran, Shiraz. International Journal of Infectious Diseases, 2011, 15, S47-S48.	1.5	0
33	PP-081 Quantitation of bacteria in gastric biopsy specimen from patients with gastrointestinal disorders: relationship between counts and clinical features. International Journal of Infectious Diseases, 2011, 15, S68.	1.5	1
34	OL-030 Use of 23S rDNA gene diversity for the discrimination of foodborne pathogenic bacteria by oligonucleotide microarrays. International Journal of Infectious Diseases, 2010, 14, S13.	1.5	0
35	A World of Wonders: Interleukin-1 (IL-1) and IL-2 Families. , 0, , .		1
36	Improving the Diagnostic Potential of Extracellular miRNAs Coupled to Multiomics Data by Exploiting the Power of Artificial Intelligence. Frontiers in Microbiology, 0, 13, .	1.5	8