Bin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136683/publications.pdf

Version: 2024-02-01

146	22,124	66	145
papers	citations	h-index	g-index
148	148	148	9104
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate?. Journal of Climate, 2000, 13, 1517-1536.	3.2	2,340
2	Rainy Season of the Asian–Pacific Summer Monsoon*. Journal of Climate, 2002, 15, 386-398.	3.2	1,132
3	Circumglobal Teleconnection in the Northern Hemisphere Summer*. Journal of Climate, 2005, 18, 3483-3505.	3.2	867
4	How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific*. Journal of Climate, 2002, 15, 1643-1658.	3.2	768
5	Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation*. Journal of Climate, 2003, 16, 1195-1211.	3.2	624
6	Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Research Letters, 2005, 32, .	4.0	566
7	How to Measure the Strength of the East Asian Summer Monsoon. Journal of Climate, 2008, 21, 4449-4463.	3.2	544
8	Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 2008, 35,	4.0	543
9	Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2718-2722.	7.1	477
10	Structures and Mechanisms of the Northward Propagating Boreal Summer Intraseasonal Oscillation*. Journal of Climate, 2004, 17, 1022-1039.	3.2	462
11	An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. Journal of Geophysical Research, 2009, 114, .	3.3	403
12	A Model for the Boreal Summer Intraseasonal Oscillation. Journals of the Atmospheric Sciences, 1997, 54, 72-86.	1.7	399
13	Pacific–East Asian Teleconnection. Part II: How the Philippine Sea Anomalous Anticyclone is Established during El Niño Development*. Journal of Climate, 2002, 15, 3252-3265.	3.2	372
14	Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 2008, 44, 165-183.	1.8	368
15	Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 2013, 40, 493-509.	3.8	368
16	Future change of global monsoon in the CMIP5. Climate Dynamics, 2014, 42, 101-119.	3.8	367
17	Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dynamics, 2009, 33, 93-117.	3.8	347
18	Recent change of the global monsoon precipitation (1979–2008). Climate Dynamics, 2012, 39, 1123-1135.	3.8	337

#	Article	IF	Citations
19	Equatorial Waves and Air–Sea Interaction in the Boreal Summer Intraseasonal Oscillation. Journal of Climate, 2001, 14, 2923-2942.	3.2	336
20	Decadal Change of the Spring Snow Depth over the Tibetan Plateau: The Associated Circulation and Influence on the East Asian Summer Monsoon*. Journal of Climate, 2004, 17, 2780-2793.	3.2	323
21	Northern Hemisphere summer monsoon intensified by mega-El Ni $ ilde{A}$ ±o/southern oscillation and Atlantic multidecadal oscillation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5347-5352.	7.1	313
22	Development Characteristics and Dynamic Structure of Tropical Intraseasonal Convection Anomalies. Journals of the Atmospheric Sciences, 1990, 47, 357-379.	1.7	299
23	Multi-scale climate variability of the South China Sea monsoon: A review. Dynamics of Atmospheres and Oceans, 2009, 47, 15-37.	1.8	293
24	The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Science Reviews, 2017, 174, 84-121.	9.1	290
25	Ensemble Simulations of Asian–Australian Monsoon Variability by 11 AGCMs*. Journal of Climate, 2004, 17, 803-818.	3.2	287
26	Low-Frequency Equatorial Waves in Vertically Sheared Zonal Flow. Part I: Stable Waves. Journals of the Atmospheric Sciences, 1996, 53, 449-467.	1.7	284
27	Dynamics of the Coupled Moist Kelvin–Rossby Wave on an Equatorialβ-Plane. Journals of the Atmospheric Sciences, 1990, 47, 397-413.	1.7	281
28	Coupling between Northward-Propagating, Intraseasonal Oscillations and Sea Surface Temperature in the Indian Ocean*. Journals of the Atmospheric Sciences, 2003, 60, 1733-1753.	1.7	266
29	Growing typhoon influence on east Asia. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	266
30	Changes in global monsoon precipitation over the past 56 years. Geophysical Research Letters, 2006, 33,	4.0	249
31	Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 2014, 125, 281-290.	3.6	225
32	Bimodal representation of the tropical intraseasonal oscillation. Climate Dynamics, 2012, 38, 1989-2000.	3.8	223
33	Historical change of El Niñ0 properties sheds light on future changes of extreme El Niñ0. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22512-22517.	7.1	221
34	Ocean Forcing to Changes in Global Monsoon Precipitation over the Recent Half-Century. Journal of Climate, 2008, 21, 3833-3852.	3.2	218
35	Northern Hemisphere Summer Monsoon Singularities and Climatological Intraseasonal Oscillation. Journal of Climate, 1997, 10, 1071-1085.	3.2	217
36	A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Climate Dynamics, 2013, 41, 327-340.	3.8	195

#	Article	IF	CITATIONS
37	Future Change of North Atlantic Tropical Cyclone Tracks: Projection by a 20-km-Mesh Global Atmospheric Model*. Journal of Climate, 2010, 23, 2699-2721.	3.2	188
38	REVIEW A Review on the Western North Pacific Monsoon: Synoptic-to-Interannual Variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 2005, 16, 285.	0.6	176
39	Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 2013, 493, 656-659.	27.8	172
40	Global Perspective of the Quasi-Biweekly Oscillation*. Journal of Climate, 2009, 22, 1340-1359.	3.2	167
41	Predictability of the Madden–Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE)*. Journal of Climate, 2014, 27, 4531-4543.	3.2	165
42	Vertical Moist Thermodynamic Structure and Spatial–Temporal Evolution of the MJO in AIRS Observations. Journals of the Atmospheric Sciences, 2006, 63, 2462-2485.	1.7	162
43	How can anomalous western North Pacific Subtropical High intensify in late summer?. Geophysical Research Letters, 2013, 40, 2349-2354.	4.0	156
44	Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate, 2020, 33, 6471-6489.	3.2	147
45	Simulation of the Intraseasonal Oscillation in the ECHAM-4 Model: The Impact of Coupling with an Ocean Model*. Journals of the Atmospheric Sciences, 2002, 59, 1433-1453.	1.7	143
46	Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere–Ocean Coupled Model and an Atmosphere-Only Model*. Journal of Climate, 2004, 17, 1263-1271.	3.2	143
47	Decadal change in relationship between east Asian and WNP summer monsoons. Geophysical Research Letters, 2005, 32, .	4.0	138
48	Centennial Variations of the Global Monsoon Precipitation in the Last Millennium: Results from ECHO-G Model. Journal of Climate, 2009, 22, 2356-2371.	3.2	138
49	The NUIST Earth System ModelÂ(NESM) versionÂ3: description and preliminary evaluation. Geoscientific Model Development, 2018, 11, 2975-2993.	3.6	135
50	Low-Frequency Equatorial Waves in Vertically Sheared Zonal Flow. Part II: Unstable Waves. Journals of the Atmospheric Sciences, 1996, 53, 3589-3605.	1.7	133
51	Roles of the Western North Pacific Wind Variation in Thermocline Adjustment and ENSO Phase Transition. Journal of the Meteorological Society of Japan, 1999, 77, 1-16.	1.8	133
52	How are seasonal prediction skills related to models' performance on mean state and annual cycle?. Climate Dynamics, 2010, 35, 267-283.	3.8	131
53	How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability?. Climate Dynamics, 2008, 30, 605-619.	3.8	129
54	Distinct Principal Modes of Early and Late Summer Rainfall Anomalies in East Asia*. Journal of Climate, 2009, 22, 3864-3875.	3.2	123

#	Article	IF	Citations
55	Boreal summer quasi-monthly oscillation in the global tropics. Climate Dynamics, 2006, 27, 661-675.	3.8	109
56	Asian summer monsoon rainfall predictability: a predictable mode analysis. Climate Dynamics, 2015, 44, 61-74.	3.8	106
57	Variable and robust East Asian monsoon rainfall response to El Niñ0 over the past 60 years (1957–2016). Advances in Atmospheric Sciences, 2017, 34, 1235-1248.	4.3	105
58	On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophysical Research Letters, 2009, 36, .	4.0	104
59	Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 2016, 6, 24331.	3.3	94
60	Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dynamics, 2013, 41, 1067-1081.	3.8	87
61	Mechanism of the Northward-Propagating Intraseasonal Oscillation: Insights from a Zonally Symmetric Model*. Journal of Climate, 2005, 18, 952-972.	3.2	82
62	Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon. Climate Dynamics, 2011, 36, 1173-1188.	3.8	81
63	Diversity of the Madden-Julian Oscillation. Science Advances, 2019, 5, eaax0220.	10.3	81
64	The 30–60-Day Convection Seesaw between the Tropical Indian and Western Pacific Oceans. Journals of the Atmospheric Sciences, 1993, 50, 184-199.	1.7	80
65	Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia. Climate Dynamics, 2016, 47, 1-13.	3.8	79
66	Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophysical Research Letters, 2019, 46, 5889-5898.	4.0	75
67	The Longest 2020 Meiyu Season Over the Past 60ÂYears: Subseasonal Perspective and Its Predictions. Geophysical Research Letters, 2021, 48, e2021GL093596.	4.0	72
68	Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dynamics, 2013, 41, 573-587.	3.8	68
69	Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Climate Dynamics, 2013, 40, 2761-2774.	3.8	64
70	How does the South Asian High influence extreme precipitation over eastern China?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4281-4298.	3.3	63
71	Seasonal evolution of the intraseasonal variability of China summer precipitation. Climate Dynamics, 2020, 54, 4641-4655.	3.8	63
72	An Intermediate Model of the Tropical Pacific Ocean. Journal of Physical Oceanography, 1995, 25, 1599-1616.	1.7	58

#	Article	IF	Citations
73	Prediction of early summer rainfall over South China by a physical-empirical model. Climate Dynamics, 2014, 43, 1883-1891.	3.8	57
74	Predictability and prediction skill of the boreal summer intraseasonal oscillation in the Intraseasonal Variability Hindcast Experiment. Climate Dynamics, 2015, 45, 2123-2135.	3.8	57
75	Climate control of the global tropical storm days (1965–2008). Geophysical Research Letters, 2010, 37, .	4.0	56
76	Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. Journal of Geophysical Research, 2010, 115, .	3.3	56
77	Are Peak Summer Sultry Heat Wave Days over the Yangtze–Huaihe River Basin Predictable?. Journal of Climate, 2018, 31, 2185-2196.	3.2	56
78	Toward Predicting Changes in the Land Monsoon Rainfall a Decade in Advance. Journal of Climate, 2018, 31, 2699-2714.	3.2	55
79	Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environmental Research Letters, 2020, 15, 114008.	5.2	55
80	EAST ASIAN MONSOON-ENSO INTERACTIONS. World Scientific Series on Asia-Pacific Weather and Climate, 2004, , 177-212.	0.2	53
81	Dynamical Control of the Tibetan Plateau on the East Asian Summer Monsoon. Geophysical Research Letters, 2019, 46, 7672-7679.	4.0	52
82	Genesis of tropical cyclone Nargis revealed by multiple satellite observations. Geophysical Research Letters, 2009, 36, .	4.0	51
83	Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s. Climate Dynamics, 2014, 42, 1325-1333.	3.8	50
84	Divergent El Ni $ ilde{A}$ ±0 responses to volcanic eruptions at different latitudes over the past millennium. Climate Dynamics, 2018, 50, 3799-3812.	3.8	48
85	Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation. Climate Dynamics, 2012, 39, 1197-1207.	3.8	44
86	How Robust is the Asian Precipitation–ENSO Relationship during the Industrial Warming Period (1901–2017)?. Journal of Climate, 2020, 33, 2779-2792.	3.2	43
87	Distinctive Roles of Air–Sea Coupling on Different MJO Events: A New Perspective Revealed from the DYNAMO/CINDY Field Campaign*. Monthly Weather Review, 2015, 143, 794-812.	1.4	42
88	An Anomalous Genesis Potential Index for MJO Modulation of Tropical Cyclones. Journal of Climate, 2017, 30, 4021-4035.	3.2	42
89	Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects. Climate Dynamics, 2019, 53, 2697-2714.	3.8	42
90	How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation?. Climate Dynamics, 2018, 51, 4421-4437.	3.8	41

#	Article	IF	Citations
91	Predicting Extreme Phases of the Indian Summer Monsoon*. Journal of Climate, 2009, 22, 346-363.	3.2	40
92	MJO Propagation Shaped by Zonal Asymmetric Structures: Results from 24 GCM Simulations. Journal of Climate, 2017, 30, 7933-7952.	3.2	39
93	How Does the Tibetan Plateau Dynamically Affect Downstream Monsoon Precipitation?. Geophysical Research Letters, 2020, 47, e2020GL090543.	4.0	35
94	A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. National Science Review, 2020, 7, 1190-1197.	9.5	35
95	How does the Asian summer precipitation-ENSO relationship change over the past 544 years?. Climate Dynamics, 2019, 52, 4583-4598.	3.8	32
96	"Warm Arcticâ€Cold Siberia―as an Internal Mode Instigated by North Atlantic Warming. Geophysical Research Letters, 2020, 47, e2019GL086248.	4.0	32
97	Circulation Factors Determining the Propagation Speed of the Madden–Julian Oscillation. Journal of Climate, 2020, 33, 3367-3380.	3.2	31
98	Northern Hemisphere Land Monsoon Precipitation Increased by the Green Sahara During Middle Holocene. Geophysical Research Letters, 2019, 46, 9870-9879.	4.0	30
99	Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Climate Dynamics, 2015, 44, 1979-1992.	3.8	29
100	Mechanisms of Global Teleconnections Associated with the Asian Summer Monsoon: An Intermediate Model Analysis*. Journal of Climate, 2013, 26, 1791-1806.	3.2	28
101	A Mechanism for Explaining the Maximum Intraseasonal Oscillation Center over the Western North Pacific*. Journal of Climate, 2014, 27, 958-968.	3.2	28
102	Predictable patterns of the May–June rainfall anomaly over East Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2203-2217.	3.3	28
103	Characterizing two types of transient intraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall. Climate Dynamics, 2017, 48, 1749-1768.	3.8	27
104	Effects of Enhanced Front Walker Cell on the Eastward Propagation of the MJO. Journal of Climate, 2018, 31, 7719-7738.	3.2	27
105	How Northern High-Latitude Volcanic Eruptions in Different Seasons Affect ENSO. Journal of Climate, 2019, 32, 3245-3262.	3.2	27
106	Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nature Communications, 2022, 13 , .	12.8	27
107	Variability and Mechanisms of Megadroughts over Eastern China during the Last Millennium: A Model Study. Atmosphere, 2019, 10, 7.	2.3	25
108	Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM). Advances in Atmospheric Sciences, 2015, 32, 585-600.	4.3	24

#	Article	IF	CITATIONS
109	An Intraseasonal Genesis Potential Index for Tropical Cyclones during Northern Hemisphere Summer. Journal of Climate, 2018, 31, 9055-9071.	3.2	24
110	Predictability and prediction of summer rainfall in the arid and semi-arid regions of China. Climate Dynamics, 2017, 49, 419-431.	3.8	22
111	Long-Lead Seasonal Prediction of China Summer Rainfall Using an EOF–PLS Regression-Based Methodology*,+. Journal of Climate, 2016, 29, 1783-1796.	3.2	21
112	Different Global Precipitation Responses to Solar, Volcanic, and Greenhouse Gas Forcings. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4060-4072.	3.3	20
113	Global monsoon response to tropical and Arctic stratospheric aerosol injection. Climate Dynamics, 2020, 55, 2107-2121.	3.8	20
114	Mechanisms of Northward Propagation of Boreal Summer Intraseasonal Oscillation Revealed by Climate Model Experiments. Geophysical Research Letters, 2019, 46, 3417-3425.	4.0	18
115	Improved historical simulation by enhancing moist physical parameterizations in the climate system model NESM3.0. Climate Dynamics, 2020, 54, 3819-3840.	3.8	18
116	Lateâ€July Barrier for Subseasonal Forecast of Summer Daily Maximum Temperature Over Yangtze River Basin. Geophysical Research Letters, 2018, 45, 12,610.	4.0	17
117	How Do Tropical, Northern Hemispheric, and Southern Hemispheric Volcanic Eruptions Affect ENSO Under Different Initial Ocean Conditions?. Geophysical Research Letters, 2018, 45, 13,041.	4.0	16
118	Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Climate Dynamics, 2019, 52, 3809-3822.	3.8	16
119	Dynamic moisture mode versus moisture mode in MJO dynamics: importance of the wave feedback and boundary layer convergence feedback. Climate Dynamics, 2019, 52, 5127-5143.	3.8	16
120	Unprecedented Northern Hemisphere Tropical Cyclone Genesis in 2018 Shaped by Subtropical Warming in the North Pacific and the North Atlantic. Geophysical Research Letters, 2019, 46, 13327-13337.	4.0	14
121	Dominant Process for Northward Propagation of Boreal Summer Intraseasonal Oscillation Over the Western North Pacific. Geophysical Research Letters, 2020, 47, e2020GL089808.	4.0	14
122	Sources of the Intermodel Spread in Projected Global Monsoon Hydrological Sensitivity. Geophysical Research Letters, 2020, 47, e2020GL089560.	4.0	14
123	A robust equatorial Pacific westerly response to tropical volcanism in multiple models. Climate Dynamics, 2020, 55, 3413-3429.	3.8	14
124	Could the Recent Taal Volcano Eruption Trigger an El Ni $\tilde{A}\pm 0$ and Lead to Eurasian Warming?. Advances in Atmospheric Sciences, 2020, 37, 663-670.	4.3	14
125	Diversity of the Boreal Summer Intraseasonal Oscillation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034137.	3.3	14
126	Diagnostic Metrics for Evaluating Model Simulations of the East Asian Monsoon. Journal of Climate, 2020, 33, 1777-1801.	3.2	14

#	Article	IF	Citations
127	Pacific multidecadal (50–70Âyear) variability instigated by volcanic forcing during the Little Ice Age (1250–1850). Climate Dynamics, 2022, 59, 231-244.	3.8	13
128	Predictability and prediction of the total number of winter extremely cold days over China. Climate Dynamics, 2018, 50, 1769-1784.	3.8	12
129	Global and Polar Region Temperature Change Induced by Single Mega Volcanic Eruption Based on Community Earth System Model Simulation. Geophysical Research Letters, 2020, 47, e2020GL089416.	4.0	11
130	Attribution of Global Monsoon Response to the Last Glacial Maximum Forcings. Journal of Climate, 2019, 32, 6589-6605.	3.2	10
131	Impacts of the South Asian high on tropical cyclone genesis in the South China Sea. Climate Dynamics, 2021, 56, 2279-2288.	3.8	10
132	Boreal Winter Surface Air Temperature Responses to Large Tropical Volcanic Eruptions in CMIP5 Models. Journal of Climate, 2020, 33, 2407-2426.	3.2	9
133	Diversity of intraseasonal oscillation over the western North Pacific. Climate Dynamics, 2021, 57, 1881-1893.	3.8	9
134	El Niñ0 Diversity Across Boreal Spring Predictability Barrier. Geophysical Research Letters, 2020, 47, e2020GL087354.	4.0	8
135	Emerging Pacific Quasiâ€Decadal Oscillation Over the Past 70ÂYears. Geophysical Research Letters, 2021, 48, e2020GL090851.	4.0	8
136	Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nature Communications, 2022, 13 , .	12.8	8
137	Holocene Multiâ€Centennial Variations of the Asian Summer Monsoon Triggered by Solar Activity. Geophysical Research Letters, 2022, 49, .	4.0	8
138	Subseasonal Prediction of Extreme Weather Events. World Scientific Series on Asia-Pacific Weather and Climate, 2018, , 33-48.	0.2	7
139	Origins of the Intraseasonal Variability of East Asian Summer Precipitation. Geophysical Research Letters, 2022, 49, .	4.0	7
140	Multiscale processes in the genesis of a nearâ€equatorial tropical cyclone during the Dynamics of the MJO Experiment: Results from partial lateral forcing experiments. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5020-5037.	3.3	6
141	Recent Changes of Pacific Decadal Variability Shaped by Greenhouse Forcing and Internal Variability. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
142	Partial lateral forcing experiments reveal how multi-scale processes induce devastating rainfall: a new application of regional modeling. Climate Dynamics, 2015, 45, 1157-1167.	3.8	5
143	NUIST ESM v3 Data Submission to CMIP6. Advances in Atmospheric Sciences, 2021, 38, 268-284.	4.3	5
144	Possible influence of the warm pool ITCZ on compound climate extremes during the boreal summer. Environmental Research Letters, 2021, 16, 114039.	5.2	5

#	Article	IF	CITATIONS
145	Distinguishing Variability Regimes of Hawaiian Summer Rainfall: Quasiâ€Biennial and Interdecadal Oscillations. Geophysical Research Letters, 2020, 47, e2020GL091260.	4.0	4
146	Improved boreal summer intraseasonal oscillation simulations over the Indian Ocean by modifying moist parameterizations in climate models. Climate Dynamics, 2021, 57, 2523.	3.8	2