Long Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136639/publications.pdf Version: 2024-02-01

LONG PANG

#	Article	IF	CITATIONS
1	The gas phase retention volume behavior of organophosphate esters on polyurethane foam. Chemosphere, 2022, 300, 134506.	8.2	1
2	Seasonal variation and affecting factors of organophosphate esters in particulate matter in air: a comparison between measured data and model predictions. Environmental Science and Pollution Research, 2021, 28, 36669-36679.	5.3	0
3	Effect of sodium dichloroisocyanurate treatment on enhancing the biodegradability of waste-activated sludge anaerobic fermentation. Journal of Environmental Management, 2021, 287, 112353.	7.8	9
4	Occurrence, distribution, and risk assessment of organophosphate esters in urban street dust in the central province of Henan, China. Environmental Science and Pollution Research, 2019, 26, 27862-27871.	5.3	7
5	Occurrence and Estrogenic Potency of Bisphenol Analogs in Sewage Sludge from Wastewater Treatment Plants in Central China. Archives of Environmental Contamination and Toxicology, 2019, 77, 461-470.	4.1	13
6	Determination of freely dissolved polycyclic aromatic hydrocarbons in human serum using core-shell Fe3O4@polyacrylate magnetic microspheres by exclusive volume effect. Journal of Chromatography A, 2019, 1602, 100-106.	3.7	5
7	Organophosphate flame retardants in total suspended particulates from an urban area of zhengzhou, China: Temporal variations, potential affecting factors, and health risk assessment. Ecotoxicology and Environmental Safety, 2019, 176, 204-210.	6.0	23
8	Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Data in Brief, 2018, 17, 1030-1035.	1.0	5
9	Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Bioresource Technology, 2018, 255, 16-21.	9.6	54
10	Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM). Science of the Total Environment, 2018, 626, 42-47.	8.0	20
11	Ionogel-Based Ionic Liquid Coating for Solid-Phase Microextraction of Organophosphorus Pesticides from Wine and Juice Samples. Food Analytical Methods, 2018, 11, 270-281.	2.6	15
12	Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 2017, 229, 445-451.	8.2	32
13	Bis(trifluoromethylsulfonyl)imideâ€based frozen ionic liquid for the hollowâ€fiber solidâ€phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Journal of Separation Science, 2017, 40, 3311-3317.	2.5	14
14	Polymeric ionic liquid based fused silica fiber by chemical binding for headspace solid-phase microextraction of organophosphate esters in water samples. International Journal of Environmental Analytical Chemistry, 2017, 97, 1094-1106.	3.3	7
15	Accelerated solvent extraction combined with solid phase extraction for the determination of organophosphate esters from sewage sludge compost by UHPLC–MS/MS. Analytical and Bioanalytical Chemistry, 2017, 409, 1435-1440.	3.7	22
16	Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters. Water Science and Technology, 2016, 74, 1602-1609.	2.5	19
17	Trace determination of organophosphate esters in environmental water samples with an ionogelâ€based nanoconfined ionic liquid fiber coating for solidâ€phase microextraction with gas chromatography and flame photometric detection. Journal of Separation Science, 2016, 39, 4415-4421.	2.5	21
18	Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China. Chemosphere, 2016, 152, 245-251.	8.2	47

Long Pang

#	Article	IF	CITATIONS
19	Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environmental Science & Technology, 2015, 49, 12611-12627.	10.0	384
20	Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2013, 32, 2755-2761.	4.3	39
21	Use of Fe ₃ O ₄ @ <i>n</i> SiO ₂ @ <i>m</i> SiO ₂ @ <i>m</i> SiO ₂ Magnetic Mesoporous Microspheres for Fast Determination of the Sorption Coefficients of Polycyclic Aromatic Hydrocarbons to Bovine Serum Albumin in Aqueous Phase. Acta Chimica Sinica, 2013, 71, 339.	1.4	6
22	Trace determination of dichlorodiphenyltrichloroethane and its main metabolites in environmental water samples with dispersive liquid–liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector. Journal of Chromatography A, 2009, 1216, 6680-6684.	3.7	45