Tong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136611/publications.pdf

Version: 2024-02-01

32	2,410	18	32
papers	citations	h-index	g-index
32	32	32	3416
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. Molecular Plant, 2022, 15, 689-705.	8.3	17
2	A virus-derived small RNA targets the rice transcription factor ROC1 to induce disease-like symptom. Phytopathology Research, 2022, 4, .	2.4	5
3	On the initiation of jasmonate biosynthesis in wounded leaves. Plant Physiology, 2022, 189, 1925-1942.	4.8	11
4	Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference. ISME Journal, 2022, 16, 1831-1842.	9.8	8
5	Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Frontiers in Microbiology, 2021, 12, 715223.	3.5	8
6	Resistance Evaluation of Dominant Varieties against Southern Rice Black-Streaked Dwarf Virus in Southern China. Viruses, 2021, 13, 1501.	3.3	4
7	Engineering plant virus resistance: from <scp>RNA</scp> silencing to genome editing strategies. Plant Biotechnology Journal, 2020, 18, 328-336.	8.3	64
8	Development of a Specific Polymerase Chain Reaction System for the Detection of Rice Orange Leaf Phytoplasma. Plant Disease, 2020, 104, 521-526.	1.4	2
9	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
10	A light-dependent molecular link between competition cues and defence responses in plants. Nature Plants, 2020, 6, 223-230.	9.3	92
11	Friend or Enemy: A Dual Role of Autophagy in Plant Virus Infection. Frontiers in Microbiology, 2020, 11, 736.	3.5	21
12	Establishing <scp>CRISPR</scp> /Cas13a immune system conferring <scp>RNA</scp> virus resistance in both dicot and monocot plants. Plant Biotechnology Journal, 2019, 17, 1185-1187.	8.3	112
13	Symptoms and yield loss caused by rice stripe mosaic virus. Virology Journal, 2019, 16, 145.	3.4	16
14	Identification of viruses infecting sweet potato in southern China by small RNA deep sequencing and PCR detection. Journal of General Plant Pathology, 2019, 85, 122-127.	1.0	2
15	Establishing <scp>RNA</scp> virus resistance in plants by harnessing <scp>CRISPR</scp> immune system. Plant Biotechnology Journal, 2018, 16, 1415-1423.	8.3	189
16	Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense. Plant Physiology, 2018, 176, 511-523.	4.8	108
17	Geographic Distribution and Genetic Diversity of Rice Stripe Mosaic Virus in Southern China. Frontiers in Microbiology, 2018, 9, 3068.	3.5	14
18	Impact of Two Reoviruses and Their Coinfection on the Rice RNAi System and vsiRNA Production. Viruses, 2018, 10, 594.	3.3	17

#	Article	IF	CITATIONS
19	Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 2018, 361, 1112-1115.	12.6	624
20	Metabolomic Changes in Sogatella furcifera under Southern rice black-streaked dwarf virus Infection and Temperature Stress. Viruses, 2018, 10, 344.	3.3	8
21	Transmission Biology of Rice Stripe Mosaic Virus by an Efficient Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). Frontiers in Microbiology, 2017, 8, 2457.	3.5	40
22	Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally. Virology Journal, 2017, 14, 150.	3.4	12
23	Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Scientific Reports, 2016, 6, 38581.	3.3	28
24	Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 2107-2120.	4.8	63
25	A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein. Journal of Virology, 2016, 90, 2077-2089.	3.4	31
26	Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1396-1408.	2.4	38
27	Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission. Frontiers in Microbiology, 2016, 7, 2140.	3.5	82
28	Loss of Arabidopsis thaliana Dynamin-Related Protein 2B Reveals Separation of Innate Immune Signaling Pathways. PLoS Pathogens, 2014, 10, e1004578.	4.7	96
29	Endoplasmic Reticulum-associated Inactivation of the Hormone Jasmonoyl-I-Isoleucine by Multiple Members of the Cytochrome P450 94 Family in Arabidopsis. Journal of Biological Chemistry, 2014, 289, 29728-29738.	3.4	96
30	Specific Cells in the Primary Salivary Glands of the Whitefly Bemisia tabaci Control Retention and Transmission of Begomoviruses. Journal of Virology, 2014, 88, 13460-13468.	3.4	85
31	Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecology Letters, 2013, 16, 390-398.	6.4	161
32	Begomovirus–whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 2012, 21, 1294-1304.	3.9	172