Dimitri Pappas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136378/publications.pdf

Version: 2024-02-01

87 1,817 22 38 papers citations h-index g-index

96 96 96 2300

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Detection of apoptosis: A review of conventional and novel techniques. Analytical Methods, 2010, 2, 996.	1.3	104
2	Raman spectroscopy in bioanalysis. Talanta, 2000, 51, 131-144.	2.9	98
3	Cellular separations: A review of new challenges in analytical chemistry. Analytica Chimica Acta, 2007, 601, 26-35.	2.6	93
4	A review of chemical gradient systems for cell analysis. Analytica Chimica Acta, 2016, 907, 7-17.	2.6	92
5	Novel uses of lasers in atomic spectroscopy. Journal of Analytical Atomic Spectrometry, 2000, 15, 1161-1189.	1.6	83
6	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
7	Fluorescence Correlation Spectroscopy: A Review of Biochemical and Microfluidic Applications. Applied Spectroscopy, 2011, 65, 115-124.	1.2	72
8	Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst, The, 2011, 136, 3519.	1.7	66
9	Recent advances in microfluidic cell separations. Analyst, The, 2013, 138, 4714.	1.7	63
10	Cell Culture Chip Using Low-Shear Mass Transport. Langmuir, 2008, 24, 5955-5960.	1.6	52
11	Open-Tubular Capillary Cell Affinity Chromatography:  Single and Tandem Blood Cell Separation. Analytical Chemistry, 2008, 80, 2118-2124.	3.2	46
12	Synthesis and Antineoplastic Evaluation of Mitochondrial Complexâ€II (Succinate Dehydrogenase) Inhibitors Derived from Atpeninâ€A5. ChemMedChem, 2017, 12, 1033-1044.	1.6	41
13	Rubidium isotope measurements in solid samples by laser ablation-laser atomic absorption spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 1771-1781.	1.5	39
14	A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing. Biomedical Microdevices, 2013, 15, 907-915.	1.4	32
15	Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device. Analyst, The, 2018, 143, 241-249.	1.7	31
16	Multiparameter Cell Affinity Chromatography: Separation and Analysis in a Single Microfluidic Channel. Analytical Chemistry, 2012, 84, 8140-8148.	3.2	29
17	Microfluidic Separation of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target. Analytical Chemistry, 2017, 89, 7340-7347.	3.2	29
18	Isolation and counting of multiple cell types using an affinity separation device. Analytica Chimica Acta, 2007, 601, 1-9.	2.6	28

#	Article	IF	Citations
19	Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography. Analytical Chemistry, 2011, 83, 774-781.	3.2	28
20	Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography. Analytical Chemistry, 2011, 83, 7863-7869.	3.2	28
21	Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. Analyst, The, 2016, 141, 525-535.	1.7	27
22	Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system. Analyst, The, 2014, 139, 3274-3280.	1.7	26
23	Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Analytical and Bioanalytical Chemistry, 2010, 396, 1177-1185.	1.9	24
24	Multiparameter Affinity Microchip for Early Sepsis Diagnosis Based on CD64 and CD69 Expression and Cell Capture. Analytical Chemistry, 2018, 90, 7204-7211.	3.2	22
25	Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta, 2019, 191, 216-221.	2.9	22
26	Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy. Analytica Chimica Acta, 2009, 651, 85-90.	2.6	21
27	Enhanced capture and release of circulating tumor cells using hollow glass microspheres with a nanostructured surface. Nanoscale, 2018, 10, 16795-16804.	2.8	21
28	Simultaneous cell capture and induction of apoptosis using an anti-CD95 affinity microdevice. Analytical and Bioanalytical Chemistry, 2009, 395, 787-795.	1.9	18
29	On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation. Analyst, The, 2015, 140, 5029-5038.	1.7	18
30	Exploring biomolecular interactions by single-molecule fluorescence. TrAC - Trends in Analytical Chemistry, 2007, 26, 884-894.	5.8	17
31	Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system. Analytica Chimica Acta, 2012, 743, 125-130.	2.6	17
32	Fundamentals of affinity cell separations. Electrophoresis, 2018, 39, 732-741.	1.3	17
33	A cesium resonance fluorescence imaging monochromator. Optics Communications, 2001, 191, 263-269.	1.0	15
34	Raman imaging for two-dimensional chemical analysis. Applied Spectroscopy Reviews, 2004, 35, 1-23.	3.4	15
35	Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device. Analytica Chimica Acta, 2016, 936, 179-184.	2.6	15
36	The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand. Analytica Chimica Acta, 2019, 1076, 154-161.	2.6	15

#	Article	IF	Citations
37	Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. Analyst, The, 2020, 145, 257-267.	1.7	15
38	Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring. Biomedical Microdevices, 2004, 6, 241-249.	1.4	14
39	Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events. Analytica Chimica Acta, 2007, 598, 135-142.	2.6	14
40	Generation of a chemical gradient across an array of 256 cell cultures in a single chip. Analyst, The, 2013, 138, 5566.	1.7	14
41	Detection of culture-negative sepsis in clinical blood samples using a microfluidic assay for combined CD64 and CD69 cell capture. Analytica Chimica Acta, 2019, 1062, 110-117.	2.6	14
42	Tunable resonance fluorescence monochromator with sub-Doppler spectral resolution. Optics Letters, 2001, 26, 1946.	1.7	13
43	The effects of flow type on aptamer capture in differential mobility cytometry cell separations. Analytica Chimica Acta, 2010, 673, 95-100.	2.6	13
44	A complementary method to CD4 counting: measurement of CD4+/CD8+ T lymphocyte ratio in a tandem affinity microfluidic system. Biomedical Microdevices, 2015, 17, 113.	1.4	13
45	Affinity separation and subsequent terminal differentiation of acute myeloid leukemia cells using the human transferrin receptor (CD71) as a capture target. Analyst, The, 2019, 144, 3369-3380.	1.7	13
46	Sealed-cell mercury resonance ionization imaging detector. Applied Optics, 2000, 39, 4911.	2.1	12
47	Microfluidic cell surface antigen expression analysis using a single antibody type. Analyst, The, 2016, 141, 1440-1447.	1.7	12
48	Self-assembly of reversed bilayer vesicles through pnictogen bonding: water-stable supramolecular nanocontainers for organic solvents. Chemical Science, 2020, 11, 4374-4380.	3.7	12
49	Evaluating the Timeliness and Specificity of CD69, CD64, and CD25 as Biomarkers of Sepsis in Mice. Shock, 2021, 55, 507-518.	1.0	12
50	Differential Mobility Cytometry. Analytical Chemistry, 2009, 81, 3334-3343.	3.2	11
51	Characterization of PDMS-modified glass from cast-and-peel fabrication. Talanta, 2009, 79, 333-338.	2.9	11
52	Temporal dynamics of receptor-induced apoptosis in an affinity microdevice. Analytical and Bioanalytical Chemistry, 2010, 397, 3387-3396.	1.9	11
53	Single molecule fluorescence correlation spectroscopy of single apoptotic cells using a red-fluorescent caspase probe. Analyst, The, 2012, 137, 2997.	1.7	11
54	Measuring complexation by single-molecule fluorescence anisotropy. Analyst, The, 2008, 133, 870.	1.7	10

#	Article	IF	CITATIONS
55	Facile functionalization of Ag@SiO2 core–shell metal enhanced fluorescence nanoparticles for cell labeling. Analytical Methods, 2014, 6, 1598.	1.3	10
56	Sub-Doppler Spectral Resolution and Improved Sensitivity in a Cesium Resonance Fluorescence Imaging Monochromator. Applied Spectroscopy, 2002, 56, 677-681.	1.2	9
57	High temporal resolution fluorescence measurements of a mitochondrial dye for detection of early stage apoptosis. Analyst, The, 2013, 138, 4892.	1.7	8
58	Diffusion of resonance radiation in atomic vapor imaging. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1761-1767.	1.5	7
59	Light Tolerance of R-Phycoerythrin and a Tandem Conjugate Observed by Single Molecule Recrossing Events. Applied Spectroscopy, 2009, 63, 709-715.	1.2	7
60	Microfluidic antibody arrays for simultaneous cell separation and stimulus. Analytical and Bioanalytical Chemistry, 2014, 406, 7867-7873.	1.9	7
61	Synthesis of a Red Fluorescent Dye-Conjugated Ag@SiO ₂ Nanocomposite for Cell Immunofluorescence. Applied Spectroscopy, 2015, 69, 215-221.	1.2	7
62	Microfluidics for sepsis early diagnosis and prognosis: a review of recent methods. Analyst, The, 2021, 146, 2110-2125.	1.7	7
63	A fluorescence toolbox: A review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis, 2019, 40, 606-615.	1.3	6
64	Formation of a Cesium Plasma by Continuous-Wave Resonance Excitation. Applied Spectroscopy, 2000, 54, 1245-1249.	1.2	5
65	Moving object detection using a cesium resonance fluorescence monochromator. Optics Communications, 2003, 219, 27-31.	1.0	5
66	Energy Transfer and Light Tolerance Studies in a Fluorescent Tandem Phycobiliprotein Conjugate. Applied Spectroscopy, 2011, 65, 991-995.	1.2	5
67	Isolation of proliferating cells from whole blood using Human Transferrin Receptor in a two-stage separation system. Talanta, 2019, 204, 731-738.	2.9	5
68	Tandem microfluidic chip isolation of prostate and breast cancer cells from simulated liquid biopsies using CD71 as an affinity ligand. RSC Advances, 2020, 10, 32628-32637.	1.7	5
69	Ten Years after the Texas Tech Accident. Part II: Changing Safety Cultures and the Current State of Academic Laboratory Safety at Texas Tech University. Journal of Chemical Health and Safety, 2020, 27, 150-159.	1.1	5
70	Detection of Mie Scattering Using a Resonance Fluorescence Monochromator. Applied Spectroscopy, 2002, 56, 1237-1240.	1.2	4
71	Investigation of Saturation and Photobleaching of Allophycocyanin by Single-Molecule Recrossing Events. Applied Spectroscopy, 2010, 64, 324-327.	1.2	4
72	Modulation and study of photoblinking behavior in dye doped silver-silica core–shell nanoparticles for localization super-resolution microscopy. Nanotechnology, 2019, 30, 455704.	1.3	4

#	Article	IF	CITATIONS
73	Fluorescence monitoring of laser induced population changes of 6P and 6D levels in cesium vapor. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1503-1509.	1.5	3
74	Core size does not affect blinking behavior of dye-doped Ag@SiO ₂ core–shell nanoparticles for super-resolution microscopy. RSC Advances, 2020, 10, 8735-8743.	1.7	3
75	A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells. Biomedical Microdevices, 2021, 23, 28.	1.4	3
76	Detection of Apoptosis Using Fluorescent Probes. Methods in Molecular Biology, 2015, 1292, 151-161.	0.4	3
77	Rapid data analysis method for differential mobility cytometry. Analytical and Bioanalytical Chemistry, 2009, 395, 2411-2413.	1.9	2
78	Comparison of methods to classify and quantify free and bound states of complexes using single molecule fluorescence anisotropy. Analyst, The, 2009, 134, 1911.	1.7	2
79	Protein-, polymer-, and silica-based luminescent nanomaterial probes for super resolution microscopy: a review. Nanoscale Advances, 2021, 3, 1853-1864.	2.2	2
80	Cell Affinity Separations on Microfluidic Devices. Methods in Molecular Biology, 2015, 1286, 55-65.	0.4	2
81	Maintaining Cultures. , 0, , 65-88.		1
82	Separating Cells. , 0, , 125-163.		1
83	The Cell-Culture Laboratory (Tools of the Trade). , 0, , 35-63.		1
84	Flow Cytometry: Cell Analysis in the Fast Lane., 0,, 165-193.		1
85	Microfluidic Chips for. Methods in Molecular Biology, 2021, 2321, 207-219.	0.4	0
86	Analyzing Cells with Microfluidic Devices. , 0, , 195-228.		0
87	Statistical Considerations. , 0, , 229-246.		0