Jay S Naik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136369/publications.pdf

Version: 2024-02-01

759233 713466 25 477 12 21 citations h-index g-index papers 25 25 25 597 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endothelial cell membrane cholesterol content regulates the contribution of <scp>TRPV4</scp> channels in <scp>ACh</scp> â€induced vasodilation in rat gracilis arteries. Microcirculation, 2022, 29, .	1.8	3
2	Simulated sleep apnea alters hydrogen sulfide regulation of blood flow and pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H511-H519.	3.2	5
3	Short-term high fat diet alters genes associated with metabolic and vascular dysfunction during adolescence in rats: a pilot study. PeerJ, 2021, 9, e11714.	2.0	1
4	Acidâ€sensing ion channel 1 contributes to pulmonary arterial smooth muscle cell depolarization following hypoxic pulmonary hypertension. Journal of Physiology, 2021, 599, 4749-4762.	2.9	10
5	Hydrogen Sulfide Actions in the Vasculature. , 2021, 11, 1-22.		5
6	Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 709-718.	2.9	6
7	Hydrogen sulfide regulation of renal and mesenteric blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1157-H1165.	3.2	11
8	Cholesterol Inhibits H 2 Sâ€Mediated Vasodilation. FASEB Journal, 2019, 33, 527.17.	0.5	0
9	Endothelial-dependent dilation following chronic hypoxia involves TRPV4-mediated activation of endothelial BK channels. Pflugers Archiv European Journal of Physiology, 2018, 470, 633-648.	2.8	17
10	Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. Current Topics in Membranes, 2018, 82, 53-91.	0.9	2
11	Reduced membrane cholesterol after chronic hypoxia limits Orai1-mediated pulmonary endothelial Ca ²⁺ entry. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H359-H369.	3.2	18
12	Reduced membrane cholesterol limits pulmonary endothelial Ca ²⁺ entry after chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1176-H1184.	3.2	14
13	Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS ONE, 2017, 12, e0180455.	2.5	45
14	Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1437-H1444.	3.2	64
15	Intermittent hypoxia in rats reduces activation of Ca ²⁺ sparks in mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1915-H1922.	3.2	15
16	Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca ²⁺ -activated K ⁺ channels and smooth muscle Ca ²⁺ sparks. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1446-H1454.	3.2	103
17	Membrane cholesterol facilitates agonistâ€induced calcium entry in pulmonary arterial endothelium. FASEB Journal, 2013, 27, 724.7.	0.5	O
18	Decreased membrane cholesterol facilitates depolarizationinduced Ca 2+ â€sensitization in pulmonary vascular smooth muscle following chronic hypoxia. FASEB Journal, 2012, 26, 873.14.	0.5	0

#	Article	IF	CITATION
19	Altered membrane lipid domains limit pulmonary endothelial calcium entry following chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1331-H1340.	3.2	15
20	Gender Differences in Mesenteric Vasoconstrictor Reactivity following Chronic Hypoxia. Microcirculation, 2008, 15, 473-484.	1.8	11
21	Reduced store-operated Ca ²⁺ entry in pulmonary endothelial cells from chronically hypoxic rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1135-L1142.	2.9	26
22	Role of Vascular Heme Oxygenase in Reduced Myogenic Reactivity Following Chronic Hypoxia. Microcirculation, 2006, 13, 81-88.	1.8	12
23	Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. Journal of Applied Physiology, 2005, 98, 1119-1124.	2.5	28
24	Endogenous carbon monoxide is an endothelial-derived vasodilator factor in the mesenteric circulation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H838-H845.	3.2	45
25	48-h Hypoxic exposure results in endothelium-dependent systemic vascular smooth muscle cell hyperpolarization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R79-R85.	1.8	21