
David A Lightfoot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5136358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 2017, 6, 42.	1.6	932
2	Plant Receptor-Like Serine Threonine Kinases: Roles in Signaling and Plant Defense. Molecular Plant-Microbe Interactions, 2008, 21, 507-517.	1.4	462
3	Genome of wild olive and the evolution of oil biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9413-E9422.	3.3	233
4	Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 2016, 14, 1095-1098.	4.1	221
5	'Forrest' resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1and Rhg4 loci. Theoretical and Applied Genetics, 2001, 103, 710-717.	1.8	156
6	Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytologist, 2016, 209, 871-884.	3.5	152
7	Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 2015, 95, 2237-2243.	1.7	123
8	Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS ONE, 2016, 11, e0148758.	1.1	122
9	High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 2010, 48, 124-130.	2.8	121
10	Title is missing!. Plant and Soil, 2000, 221, 47-57.	1.8	111
11	A BAC- and BIBAC-Based Physical Map of the Soybean Genome. Genome Research, 2004, 14, 319-326.	2.4	111
12	Allelopathic Effects of Water Hyacinth [Eichhornia crassipes]. PLoS ONE, 2010, 5, e13200.	1.1	110
13	An updated â€~Essex' by â€~Forrest' linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics, 2006, 113, 1015-1026.	1.8	106
14	The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiologiae Plantarum, 2008, 30, 537-544.	1.0	103
15	The chloroplast-located glutamine synthetase of Phaseolus vulgaris L.: nucleotide sequence, expression in different organs and uptake into isolated chloroplasts. Plant Molecular Biology, 1988, 11, 191-202.	2.0	101
16	Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theoretical and Applied Genetics, 2002, 104, 294-300.	1.8	98
17	Application of the CERES-Wheat Model for Within-Season Prediction of Winter Wheat Yield in the United Kingdom. Agronomy Journal, 2003, 95, 114.	0.9	98
18	The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Research, 2006, 34, D758-D765.	6.5	96

#	Article	IF	CITATIONS
19	Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex × Forrest RILs. Theoretical and Applied Genetics, 2001, 102, 187-192.	1.8	93
20	The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theoretical and Applied Genetics, 2007, 114, 1081-1090.	1.8	93
21	Association of Loci Underlying Field Resistance to Soybean Sudden Death Syndrome (SDS) and Cyst Nematode (SCN) Race 3. Crop Science, 1997, 37, 965-971.	0.8	92
22	Metabolite Fingerprinting in TransgenicNicotiana tabacumAltered by theEscherichia coliGlutamate Dehydrogenase Gene. Journal of Biomedicine and Biotechnology, 2005, 2005, 198-214.	3.0	91
23	The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nature Plants, 2016, 2, 16167.	4.7	90
24	Classification and experimental identification of plant long non-coding RNAs. Genomics, 2019, 111, 997-1005.	1.3	88
25	Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica, 2008, 162, 231-239.	0.6	86
26	Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theoretical and Applied Genetics, 1999, 99, 1131-1142.	1.8	84
27	Selecting Soybean Cultivars for Dual Resistance to Soybean Cyst Nematode and Sudden Death Syndrome Using Two DNA Markers. Crop Science, 1999, 39, 982-987.	0.8	82
28	Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrasonics Sonochemistry, 2015, 24, 247-255.	3.8	82
29	cDNA sequence and differential expression of the gene encoding the glutamine synthetase ? polypeptide ofPhaseolus vulgaris L Plant Molecular Biology, 1989, 12, 553-565.	2.0	79
30	Root response to Fusarium solani f. sp . glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theoretical and Applied Genetics, 2005, 110, 1429-1438.	1.8	79
31	Genetic and Physical Localization of the Soybean Rpg1-b Disease Resistance Gene Reveals a Complex Locus Containing Several Tightly Linked Families of NBS-LRR Genes. Molecular Plant-Microbe Interactions, 2003, 16, 817-826.	1.4	77
32	Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theoretical and Applied Genetics, 2008, 116, 967-977.	1.8	76
33	Genomic Regions That Underlie Soybean Seed Isoflavone Content. Journal of Biomedicine and Biotechnology, 2001, 1, 38-44.	3.0	74
34	Resistance to Soybean Sudden Death Syndrome and Root Colonization by Fusarium solani f. sp. glycine in Nearâ€Isogenic Lines. Crop Science, 1998, 38, 472-477.	0.8	73
35	Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics, 2006, 276, 503-516.	1.0	73
36	SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 2011, 122, 1161-1170.	1.8	70

#	Article	IF	CITATIONS
37	Definition of Soybean Genomic Regions That Control Seed Phytoestrogen Amounts. Journal of Biomedicine and Biotechnology, 2004, 2004, 52-60.	3.0	67
38	Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica, 2007, 156, 103-116.	0.6	64
39	The Nematode Resistance Allele at the rhg1 Locus Alters the Proteome and Primary Metabolism of Soybean Roots Â. Plant Physiology, 2009, 151, 1264-1280.	2.3	63
40	A SNP-Based Genetic Linkage Map of Soybean Using the SoyS - NP6K Illumina Infinium BeadChip Genotyping Array. Journal of Plant Genome Sciences, 2013, 1, 80-89.	0.2	62
41	Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach. Molecules, 2015, 20, 6611-6625.	1.7	62
42	Rateâ€Reducing Resistance to Fusarium solani f. sp. phaseoli underlies Field Resistance to Soybean Sudden Death Syndrome. Crop Science, 1997, 37, 132-138.	0.8	61
43	Quantitative trait loci in Two Soybean Recombinant Inbred Line Populations Segregating for Yield and Disease Resistance. Crop Science, 2002, 42, 271.	0.8	58
44	Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theoretical and Applied Genetics, 2004, 109, 1041-1050.	1.8	57
45	Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theoretical and Applied Genetics, 2014, 127, 2525-2543.	1.8	55
46	Identification of Quantitative Trait Loci (QTL) Underlying Protein, Oil, and Five Major Fatty Acids' Contents in Soybean. American Journal of Plant Sciences, 2014, 05, 158-167.	0.3	51
47	Trigonelline concentrations in salt stressed leaves of cultivated Glycine max. Phytochemistry, 1999, 52, 1235-1238.	1.4	48
48	Roundup Ready Soybean: Glyphosate Effects on Fusarium solani Root Colonization and Sudden Death Syndrome. Agronomy Journal, 2003, 95, 1140-1145.	0.9	47
49	Anti-cancer characteristics of mevinolin against three different solid tumor cell lines was not solely p53-dependent. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 673-679.	2.5	46
50	Simultaneous extraction, optimization, and analysis of flavonoids and polyphenols from peach and pumpkin extracts using a TLC-densitometric method. Chemistry Central Journal, 2015, 9, 39.	2.6	46
51	Trigonelline Concentration in Field-Grown Soybean in Response to Irrigation. Biologia Plantarum, 2003, 46, 405-410.	1.9	43
52	Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar â€~Hartwig' to three soybean cyst nematode populations. Theoretical and Applied Genetics, 2010, 120, 633-644.	1.8	43
53	The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate. Weed Research, 2004, 44, 335-339.	0.8	40
54	Registration of the Essex × Forrest Recombinant Inbred Line Mapping Population. Crop Science, 2005, 45, 1678-1681.	0.8	40

4

#	Article	IF	CITATIONS
55	Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Functional and Integrative Genomics, 2011, 11, 539-549.	1.4	40
56	A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics, 2011, 12, 266.	1.2	40
57	The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean. Frontiers in Genetics, 2018, 9, 104.	1.1	37
58	The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genomics, 2012, 13, 368.	1.2	36
59	Cytotoxic and antioxidant properties of active principals isolated from water hyacinth against four cancer cells lines. BMC Complementary and Alternative Medicine, 2014, 14, 397.	3.7	36
60	Title is missing!. Molecular Breeding, 2001, 7, 63-71.	1.0	35
61	Modulatory role of lipoic acid on lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Chemico-Biological Interactions, 2009, 182, 112-118.	1.7	35
62	Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Molecular Breeding, 2013, 31, 693-703.	1.0	35
63	Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of `Essex' x `Forrest'. Plant and Soil, 2004, 260, 197-204.	1.8	33
64	Soybean Genomics: Developments through the Use of Cultivar "Forrest― International Journal of Plant Genomics, 2008, 2008, 1-22.	2.2	33
65	A pyramid of loci for partial resistance to Fusarium solani f. sp. glycines maintains Myo-inositol-1-phosphate synthase expression in soybean roots. Theoretical and Applied Genetics, 2002, 105, 1115-1123.	1.8	32
66	Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Molecular Breeding, 2011, 27, 67-75.	1.0	32
67	Propagation of Hazelnut Stem Cuttings Using Agrobacterium rhizogenes. Hortscience: A Publication of the American Society for Hortcultural Science, 1991, 26, 1058-1060.	0.5	31
68	Water potential is maintained during water deficit in Nicotiana tabacum expressing the Escherichia coli glutamate dehydrogenase gene. Plant Growth Regulation, 2006, 50, 231-238.	1.8	28
69	Soybean disease resistance protein RHG1-LRR domain expressed, purified and refolded from Escherichia coli inclusion bodies: Preparation for a functional analysis. Protein Expression and Purification, 2007, 53, 346-355.	0.6	28
70	Genetic Analysis of Root and Shoot Traits in the â€~Essex' By â€~Forrest' Recombinant Inbred Line (RIL) Population of Soybean [Glycine max (L.) Merr.]. Journal of Plant Genome Sciences, 2012, 1, 1-9.	0.2	27
71	A Bacterial Artificial Chromosome Library of Lotus japonicus Constructed in an Agrobacterium tumefaciens-Transformable Vector. Molecular Plant-Microbe Interactions, 2001, 14, 422-425.	1.4	26
72	Analyses of Phaseolus vulgaris L. and P. coccineus Lam. hybrids by RFLP: preferential transmission of P. vulgaris alleles. Theoretical and Applied Genetics, 1991, 81, 703-709.	1.8	25

#	Article	IF	CITATIONS
73	Identification of Gsr1 in Arabidopsis thaliana: A locus inferred to regulate gene expression in response to exogenous glutamine. Euphytica, 2006, 151, 291-302.	0.6	25
74	DNA Markers Associated with Loci Underlying Seed Phytoestrogen Content in Soybeans. Journal of Medicinal Food, 1999, 2, 185-187.	0.8	24
75	Quantitative Trait Loci for Seed Isoflavone Contents in â€~MD96-5722' by â€~Spencer' Recombinant Inbre Lines of Soybean. Journal of Agricultural and Food Chemistry, 2014, 62, 1464-1468.	2.4	24
76	Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Scientific Reports, 2019, 9, 1506.	1.6	24
77	The genetic control of tolerance to aluminum toxicity in the â€Essex' by â€Forrest' recombinant inbred line population. Theoretical and Applied Genetics, 2011, 122, 687-694.	1.8	23
78	Expression of the Escherichia coli glutamate dehydrogenase gene in the cyanobacterium Synechococcus PCC6301 causes ammonium tolerance. Plant Molecular Biology, 1988, 11, 335-344.	2.0	21
79	Usefulness of 10 genomic regions in soybean associated with sudden death syndrome resistance. Theoretical and Applied Genetics, 2013, 126, 2391-2403.	1.8	21
80	Distribution of the ΔG210 Protoporphyrinogen Oxidase Mutation in Illinois Waterhemp (<i>Amaranthus) Tj ETQq</i>	0 0 0 rgBT 0.8	7 /Overlock 2
81	In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme. BMC Genomics, 2008, 9, S6.	1.2	20
82	Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode. Theoretical and Applied Genetics, 2012, 124, 1027-1039.	1.8	20
83	Quantitative Trait Loci Associated with Foliar Trigonelline Accumulation inGlycine MaxL. Journal of Biomedicine and Biotechnology, 2002, 2, 151-157.	3.0	19
84	A sequence based synteny map between soybean and Arabidopsis thaliana. BMC Genomics, 2007, 8, 8.	1.2	19
85	Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia) Tj ETQq1 1 0.784	1314 rgBT	/Qyerlock 1
86	Integration of sudden death syndrome resistance loci in the soybean genome. Theoretical and Applied Genetics, 2018, 131, 757-773.	1.8	19
87	Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. Theoretical and Applied Genetics, 2019, 132, 2677-2687.	1.8	18
88	Association between serotonin transporter polymorphisms and problem behavior in adult males with intellectual disabilities. Brain Research, 2010, 1357, 97-103.	1.1	16
89	QTL underlying plant and first branch height in cassava (Manihot esculenta Crantz). Field Crops Research, 2011, 121, 343-349.	2.3	16
90	Registration of the Flyer × Hartwig Recombinant Inbred Line Mapping Population. Journal of Plant Registrations, 2007, 1, 175-178.	0.4	16

#	Article	IF	CITATIONS
91	Monoamine Oxidase A Promoter Gene Associated With Problem Behavior in Adults With Intellectual/Developmental Disabilities. American Journal on Intellectual and Developmental Disabilities, 2009, 114, 269-273.	0.8	15
92	Two Decades of Molecular Markerâ€Assisted Breeding for Resistance to Soybean Sudden Death Syndrome. Crop Science, 2015, 55, 1460-1484.	0.8	15
93	Homo-dimerization and ligand binding by the leucine-rich repeat domain at RHG1/RFS2 underlying resistance to two soybean pathogens. BMC Plant Biology, 2013, 13, 43.	1.6	14
94	A SNP genetic linkage map based on the â€~Hamilton' by â€~Spencer' recombinant inbred line population identified QTL for seed isoflavone contents in soybean. Plant Breeding, 2015, 134, 580-588.	1.0	14
95	Blue Revolution Brings Risks and Rewards. Science, 2008, 321, 771-772.	6.0	13
96	A bacterial artificial chromosome based physical map of the <i>Ustilago maydis</i> genome. Genome, 2005, 48, 207-216.	0.9	12
97	Quantitative Trait Loci Underlying Seed Sugars Content in "MD96-5722―by "Spencer―Recombinant Inbred Line Population of Soybean. Food and Nutrition Sciences (Print), 2015, 06, 964-973.	0.2	12
98	Evaluation of the antimicrobial activities of ultrasonicated spinach leaf extracts using RAPD markers and electron microscopy. Archives of Microbiology, 2017, 199, 1417-1429.	1.0	11
99	Mapping of QTL Associated with Seed Amino Acids Content in "MD96-5722―by "Spencer―RIL Populatic of Soybean Using SNP Markers. Food and Nutrition Sciences (Print), 2015, 06, 974-984.	on 0.2	11
100	Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly. BMC Genomics, 2008, 9, 323.	1.2	10
101	Additional Quantitative Trait Loci and Candidate Genes for Seed Isoflavone Content in Soybean. Journal of Agricultural Science, 2013, 5, .	0.1	10
102	Effects of plant-derived anti-leukemic drugs on individualized leukemic cell population profiles in Egyptian patients. Oncology Letters, 2016, 11, 642-648.	0.8	10
103	Nutrient Use Efficiency. , 2013, , 333-393.		9
104	Detection of QTL underlying seed quality components in soybean [<i>Glycine max</i> (L.) Merr.]. Canadian Journal of Plant Science, 2018, 98, 881-888.	0.3	9
105	Combination of gold nanoparticles with low-LET irradiation: an approach to enhance DNA DSB induction in HT29 colorectal cancer stem-like cells. Journal of Cancer Research and Clinical Oncology, 2019, 145, 97-107.	1.2	9
106	Effects of Soy Protein and Soy Phytoestrogens on Symptoms Associated with Cardiovascular Disease in Rats. Journal of Medicinal Food, 1999, 2, 271-273.	0.8	8
107	Effect of a Chemical Modified Urea Fertilizer on Soil Quality: Soil Microbial Populations Around Corn Roots. Communications in Soil Science and Plant Analysis, 2009, 40, 2152-2168.	0.6	8
108	Predicting <i>In Silico</i> Which Mixtures of the Natural Products of Plants Might Most Effectively Kill Human Leukemia Cells?. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	0.5	8

#	Article	IF	CITATIONS
109	Electric field applications on dried key lime juice quality with regression modeling. Journal of Food Processing and Preservation, 2018, 42, e13637.	0.9	8
110	EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production. Microorganisms, 2020, 8, 1239.	1.6	8
111	Evaluating Physical Maps by Clone Location Comparisons. Journal of Genome Science and Technology, 2003, 2, 98-105.	0.7	8
112	Molecular studies for drought tolerance in some Egyptian wheat genotypes under different irrigation systems. Open Agriculture, 2020, 5, 280-290.	0.7	8
113	Effect of Row Spacing on Seed Isoflavone Contents in Soybean [Clycine max (L.) Merr.]. American Journal of Plant Sciences, 2014, 05, 4003-4010.	0.3	8
114	Development of a pooled probe method for locating small gene families in a physical map of soybean using stress related paralogues and a BAC minimum tile path. Plant Methods, 2006, 2, 20.	1.9	7
115	New Approaches to Selecting Resistance or Tolerance to SDS and Fusarium Root Rot. Journal of Plant Genome Sciences, 2012, 1, 10-17.	0.2	7
116	Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme. Applied Biochemistry and Biotechnology, 2016, 180, 1657-1674.	1.4	6
117	Dietary Soy Protein and Soy Isoflavones: Histological Examination of Reproductive Tissues in Female Rats. Journal of Medicinal Food, 1999, 2, 247-249.	0.8	5
118	Development of a physical map of the soybean pathogen Fusarium virguliforme based on synteny with Fusarium graminearum genomic DNA. BMC Genomics, 2007, 8, 262.	1.2	4
119	Clufosinate Absorption, Translocation, and Metabolic Fingerprint Effects in <i>gdhA</i> â€Transformed Tobacco. Crop Science, 2017, 57, 350-364.	0.8	4
120	Effects of drip irrigation circuit design and lateral line lengths: I—On pressure and friction loss. Agricultural Sciences, 2012, 03, 392-399.	0.2	4
121	Comparison of Early and Conventional Soybean Production Systems for Yield and other Agronomic Traits. Atlas Journal of Plant Biology, 2011, 1, 1-5.	0.1	4
122	The Multigeneic Rhg1 Locus: A Model For The Effects on Root Development, Nematode Resistance and Recombination Suppression Nature Precedings, 2008, , .	0.1	3
123	Molecular Mapping and Breeding with Microsatellite Markers. Methods in Molecular Biology, 2013, 1006, 297-317.	0.4	3
124	A high-resolution melting approach for analyzing allelic expression dynamics. Current Issues in Molecular Biology, 2009, 11 Suppl 1, i1-9.	1.0	3
125	The interactions of the largest subunit of RNA polymerase II with other cellular proteins: a bioinformatic approach. Current Issues in Molecular Biology, 2009, 11 Suppl 1, i65-71.	1.0	3
126	A Mutated Yeast Strain with Enhanced Ethanol Production Efficiency and Stress Tolerance. Atlas Journal of Biology, 2012, 2, 100-115.	0.1	2

#	Article	IF	CITATIONS
127	A Computational Approach to Understand Arabidopsis thaliana and Soybean Resistance to Fusarium solani (Fsg). , 2007, , .		1
128	Nitrogen Fixation and Assimilation. , 2013, , 395-413.		1
129	Transcript Abundance Responses of Resistance Pathways of Arabidopsis thaliana to Deoxynivalenol. Atlas Journal of Biology, 2013, 2, 154-161.	0.1	1
130	Resistance to Soybean Cyst Nematode: Rhg1 Journal of Plant Genome Sciences, 0, , 39-45.	0.2	1
131	Evaluation of Several Agronomic Traits in â€~Essex' By â€~Forrest' Recombinant Inbred Line Population of Soybean [Glycine max (L.) Merr.]. Atlas Journal of Plant Biology, 2011, 1, 13-17.	0.1	1
132	Using A Minimum Tile Path For Plant Transformations Encompassing the Entire Soybean Genome. Journal of Plant Genome Sciences, 0, , 31-38.	0.2	1
133	Ramsey CB, Dee MW, Rowland JM, Higham TFG, Harris SA, Brock F, et al. Radiocarbon-based chronology for dynastic Egypt. Science 2010;328:1554. Journal of Advanced Research, 2015, 6, 535-537.	4.4	0
134	Identification of Genes Underlying Simple Traits in Soybean. , 2010, , 55-69.		0
135	Expression of Plant Receptor Kinases in E. coli. Methods in Molecular Biology, 2017, 1621, 3-20.	0.4	Ο
136	Review of the Rpt3 Genes Encoding Part of the 26S Proteasome Associated with Loci Underlying Disease Resistance in Soybean Atlas Journal of Biology, 2012, 2, 88-93.	0.1	0
137	Practical Use of Nitrogen Gas as a Method for Insect Control in Herbaria Atlas Journal of Biology, 2013, 2, 142-146.	0.1	0
138	Quantitative Trait Loci Underlying Partial Resistance to Cercospora sojina Race 2 Detected in Soybean Seedlings in Greenhouse Assays. Atlas Journal of Biology, 2014, 3, 175-182.	0.1	0
139	SNP-E: A New Method For Multiple Sequence Alignments Anal- ysis And Accurate Single Nucleotide Polymorphism Evaluation. Atlas Journal of Biology, 2014, 3, 206-2011.	0.1	0
140	Genetic Mapping of QTL Associated with Seed Macronutrients Accumulation in â€~MD 96-5722' by â€~Spencer' Recombinant In - bred Lines of Soybean. Atlas Journal of Biology, 2015, 3, 224-235.	0.1	0
141	Identification of QTL Underlying Seed Micronutrients Accumu - lation in â€~MD 96-5722' by â€~Spencer' Recombinant Inbred Lines of Soybean. Atlas Journal of Plant Biology, 2015, 1, 39-49.	0.1	0