
Nilce Maria Martinez-Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5135385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungal Extracellular Vesicles Are Involved in Intraspecies Intracellular Communication. MBio, 2022, 13, e0327221.	1.8	21
2	Relevance of Nutrient-Sensing in the Pathogenesis of Trichophyton rubrum and Trichophyton interdigitale. Frontiers in Fungal Biology, 2022, 3, .	0.9	4
3	The bZIP Ap1 transcription factor is a negative regulator of virulence attributes of the anthropophilic dermatophyte Trichophyton rubrum. Current Research in Microbial Sciences, 2022, 3, 100132.	1.4	0
4	Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections. Mycopathologia, 2021, 186, 327-340.	1.3	19
5	StuA-Regulated Processes in the Dermatophyte Trichophyton rubrum: Transcription Profile, Cell-Cell Adhesion, and Immunomodulation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643659.	1.8	7
6	State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. Journal of Fungi (Basel, Switzerland), 2021, 7, 629.	1.5	34
7	Genes coding for LysM domains in the dermatophyte Trichophyton rubrum: A transcription analysis. Medical Mycology, 2020, 58, 372-379.	0.3	13
8	The stuA gene controls development, adaptation, stress tolerance, and virulence of the dermatophyte Trichophyton rubrum. Microbiological Research, 2020, 241, 126592.	2.5	9
9	Cellular and Molecular Response of Macrophages THP-1 during Co-Culture with Inactive Trichophyton rubrum Conidia. Journal of Fungi (Basel, Switzerland), 2020, 6, 363.	1.5	11
10	Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale. Brazilian Journal of Microbiology, 2020, 51, 1585-1591.	0.8	8
11	HacA Governs Virulence Traits and Adaptive Stress Responses in Trichophyton rubrum. Frontiers in Microbiology, 2020, 11, 193.	1.5	13
12	Comprehensive analysis of the dermatophyte <i>Trichophyton rubrum</i> transcriptional profile reveals dynamic metabolic modulation. Biochemical Journal, 2020, 477, 873-885.	1.7	18
13	The PAC-3 transcription factor critically regulates phenotype-associated genes in Neurospora crassa. Genetics and Molecular Biology, 2020, 43, e20190374.	0.6	4
14	Alternative Splicing in Heat Shock Protein Transcripts as a Mechanism of Cell Adaptation in Trichophyton rubrum. Cells, 2019, 8, 1206.	1.8	21
15	The pH Signaling Transcription Factor PAC-3 Regulates Metabolic and Developmental Processes in Pathogenic Fungi. Frontiers in Microbiology, 2019, 10, 2076.	1.5	9
16	Global Analysis of Cell Wall Genes Revealed Putative Virulence Factors in the Dermatophyte Trichophyton rubrum. Frontiers in Microbiology, 2019, 10, 2168.	1.5	19
17	The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine. Pathogens, 2019, 8, 274.	1.2	11
18	The prp4 kinase gene and related spliceosome factor genes in Trichophyton rubrum respond to nutrients and antifungals. Journal of Medical Microbiology, 2019, 68, 591-599.	0.7	11

#	Article	IF	CITATIONS
19	Differential expression of multidrug-resistance genes in Trichophyton rubrum. Journal of Integrated OMICS, 2019, 9, .	0.5	2
20	Whole-Genome Analysis Illustrates Global Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen <i>Trichophyton rubrum</i> . Genetics, 2018, 208, 1657-1669.	1.2	48
21	Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Scientific Reports, 2018, 8, 2520.	1.6	35
22	STE20/PAKA Protein Kinase Gene Releases an Autoinhibitory Domain through Pre-mRNA Alternative Splicing in the Dermatophyte Trichophyton rubrum. International Journal of Molecular Sciences, 2018, 19, 3654.	1.8	10
23	Eighty Years of Mycopathologia: A Retrospective Analysis of Progress Made in Understanding Human and Animal Fungal Pathogens. Mycopathologia, 2018, 183, 859-877.	1.3	21
24	The Duality of the MAPK Signaling Pathway in the Control of Metabolic Processes and Cellulase Production in Trichoderma reesei. Scientific Reports, 2018, 8, 14931.	1.6	31
25	Extracellular Vesicles From the Dermatophyte Trichophyton interdigitale Modulate Macrophage and Keratinocyte Functions. Frontiers in Immunology, 2018, 9, 2343.	2.2	79
26	mus-52 disruption and metabolic regulation in Neurospora crassa: Transcriptional responses to extracellular phosphate availability. PLoS ONE, 2018, 13, e0195871.	1.1	3
27	Dual RNA-Seq Analysis of Trichophyton rubrum and HaCat Keratinocyte Co-Culture Highlights Important Genes for Fungal-Host Interaction. Genes, 2018, 9, 362.	1.0	38
28	Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Frontiers in Microbiology, 2018, 9, 1108.	1.5	114
29	OUP accepted manuscript. Medical Mycology, 2018, 56, 378-381.	0.3	18
30	Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia, 2017, 182, 215-227.	1.3	93
31	Preâ€ <scp>mRNA</scp> splicing is modulated by antifungal drugs in the filamentous fungus <i>Neurospora crassa</i> . FEBS Open Bio, 2016, 6, 358-368.	1.0	18
32	<i>In vitro</i> and <i>ex vivo</i> infection models help assess the molecular aspects of the interaction of <i>Trichophyton rubrum</i> with the host milieu. Medical Mycology, 2016, 54, 420-427.	0.3	38
33	Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. Journal of Medical Microbiology, 2016, 65, 605-610.	0.7	34
34	Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Current Genomics, 2016, 17, 99-111.	0.7	22
35	Heat Shock Protein 90 (Hsp90) as a Molecular Target for the Development of Novel Drugs Against the Dermatophyte Trichophyton rubrum. Frontiers in Microbiology, 2015, 6, 1241.	1.5	45
36	RNA-sequencing analysis of Trichophyton rubrumtranscriptome in response to sublethal doses of acriflavine. BMC Genomics, 2014, 15, S1.	1.2	36

#	Article	IF	CITATIONS
37	Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reeseiusing high-throughput genomic and proteomic analyses. Biotechnology for Biofuels, 2014, 7, 41.	6.2	131
38	Transcriptome in Human Mycoses. , 2014, , 227-263.		0
39	The <i>Microsporum canis</i> genome is organized into five chromosomes based on evidence from electrophoretic karyotyping and chromosome end mapping. Medical Mycology, 2013, 51, 208-213.	0.3	5
40	Ambient pH sensing in filamentous fungi: Pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life, 2013, 65, 930-935.	1.5	28
41	Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal Genetics and Biology, 2013, 60, 140-149.	0.9	33
42	Comparative Genome Analysis of <i>Trichophyton rubrum</i> and Related Dermatophytes Reveals Candidate Genes Involved in Infection. MBio, 2012, 3, e00259-12.	1.8	211
43	<i>rpb2</i> is a reliable reference gene for quantitative gene expression analysis in the dermatophyte <i>Trichophyton rubrum</i> . Medical Mycology, 2012, 50, 368-377.	0.3	50
44	Transcription of N―and Oâ€ŀinked mannosyltransferase genes is modulated by the <i>pacC</i> gene in the human dermatophyte <i>Trichophyton rubrum</i> . FEBS Open Bio, 2012, 2, 294-297.	1.0	10
45	Role of pH in the pathogenesis of dermatophytoses. Mycoses, 2012, 55, 381-387.	1.8	47
46	Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients. Rheumatology International, 2012, 32, 427-430.	1.5	65
47	Isolation of transcripts overexpressed in the human pathogenTrichophyton rubrumgrown in lipid as carbon source. Canadian Journal of Microbiology, 2011, 57, 333-338.	0.8	9
48	Antimicrobial Activities of Indole Alkaloids from <i>Tabernaemontana catharinensis</i> . Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	7
49	Transcription of <i>Aspergillus nidulans pacC</i> is modulated by alternative RNA splicing of <i>palB</i> . FEBS Letters, 2011, 585, 3442-3445.	1.3	32
50	In vitro susceptibility to antimycotic drug undecanoic acid, a medium-chain fatty acid, is nutrient-dependent in the dermatophyte Trichophyton rubrum. World Journal of Microbiology and Biotechnology, 2011, 27, 1719-1723.	1.7	11
51	Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress and Chaperones, 2011, 16, 565-572.	1.2	22
52	Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis. Natural Product Communications, 2011, 6, 193-6.	0.2	16
53	Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress and Chaperones, 2010, 15, 225-231.	1.2	15
54	Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiology, 2010, 10, 39.	1.3	49

#	Article	IF	CITATIONS
55	Dermatófitos: interação patógeno-hospedeiro e resistência a antifúngicos. Anais Brasileiros De Dermatologia, 2010, 85, 657-667.	0.5	140
56	Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microbial Pathogenesis, 2010, 48, 91-96.	1.3	35
57	MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals. Genetics and Molecular Biology, 2009, 32, 234-241.	0.6	10
58	Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage. Microbiological Research, 2009, 164, 658-664.	2.5	11
59	A splice variant of the <i>Neurospora crassa hexâ€l </i> transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Letters, 2009, 583, 180-184.	1.3	37
60	Membrane transporter proteins are involved in Trichophyton rubrum pathogenesis. Journal of Medical Microbiology, 2009, 58, 163-168.	0.7	32
61	Antifungal Resistance Mechanisms in Dermatophytes. Mycopathologia, 2008, 166, 369-383.	1.3	177
62	A Single Amino Acid Substitution in One of the Lipases of AspergillusÂnidulans Confers Resistance to the Antimycotic Drug Undecanoic Acid. Biochemical Genetics, 2008, 46, 557-565.	0.8	7
63	Over-expression of genes coding for proline oxidase, riboflavin kinase, cytochrome c oxidase and an MFS transporter induced by acriflavin inTrichophyton rubrum. Medical Mycology, 2008, 46, 135-139.	0.3	14
64	Cytogenetic and molecular analysis of MLL rearrangements in acute lymphoblastic leukaemia survivors. Mutagenesis, 2008, 24, 153-160.	1.0	11
65	In vitro antifungal drug susceptibilities of dermatophytes microconidia and arthroconidia. Journal of Antimicrobial Chemotherapy, 2008, 62, 758-761.	1.3	55
66	Identification of genes differentially expressed in a strain of the mold <i>Aspergillus nidulans</i> carrying a loss-of-function mutation in the <i>palA</i> gene. Canadian Journal of Microbiology, 2008, 54, 803-811.	0.8	13
67	Disruption of drrA Gene Affects the Xanthomonas axonopodis pv. citri Response to Oxidative Stress. Journal of Biological Sciences, 2008, 8, 349-355.	0.1	0
68	The transcription of the gene for iso-orotate decarboxylase (IDCase), an enzyme of the thymidine salvage pathway, is downregulated in the <i>preg^c</i> mutant strain of Neurospora crassa grown under phosphate starvation. Canadian Journal of Microbiology, 2007, 53, 1011-1015.	0.8	12
69	Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microbial Pathogenesis, 2007, 43, 166-172.	1.3	58
70	Evolution of hepatitis C virus infection under host factor influence in an ethnically complex population. Liver International, 2007, 27, 1371-1378.	1.9	13
71	Identification of genes displaying differential expression in the nuc-2 mutant strain of the mold Neurospora crassa grown under phosphate starvation. FEMS Microbiology Letters, 2007, 269, 196-200.	0.7	22
72	Analysis ofTrichophyton rubrumgene expression in response to cytotoxic drugs. FEMS Microbiology Letters, 2007, 271, 180-186.	0.7	30

#	Article	IF	CITATIONS
73	Identification of a novel 120 bp allele at the TNFd microsatellite locus. Tissue Antigens, 2006, 67, 318-320.	1.0	6
74	Molecular cloning and characterization of a novel ABC transporter gene in the human pathogenTrichophyton rubrum. Medical Mycology, 2006, 44, 141-147.	0.3	44
75	Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. Journal of Medical Microbiology, 2006, 55, 1093-1099.	0.7	104
76	A Phe389Leu Substitution in ErgA Confers Terbinafine Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2006, 50, 2533-2536.	1.4	34
77	The pH signaling transcription factor PacC mediates the growth ofTrichophyton rubrumon human nailin vitro. Medical Mycology, 2006, 44, 641-645.	0.3	85
78	Undecanoic acid resistance in filamentous fungi: Identification and linkage mapping of the Aspergillus nidulans udaA gene. Journal of General and Applied Microbiology, 2005, 51, 47-49.	0.4	2
79	A Transcript Finishing Initiative for Closing Gaps in the Human Transcriptome. Genome Research, 2004, 14, 1413-1423.	2.4	22
80	Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans. Antimicrobial Agents and Chemotherapy, 2004, 48, 3530-3535.	1.4	50
81	On the pBuM189 satellite DNA variability among South American populations of Drosophila buzzatii. Hereditas, 2004, 139, 161-166.	0.5	16
82	Electrophoretic molecular karyotype of the dermatophyte Trichophyton rubrum. Genetics and Molecular Biology, 2004, 27, 99-102.	0.6	10
83	Identification and complete sequencing of novel human transcripts through the use of mouse orthologs and testis cDNA sequences. Genetics and Molecular Research, 2004, 3, 493-511.	0.3	0
84	Addendum to "The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway―[Fungal Genet. Biol. 39 (2003) 286–295]. Fungal Genetics and Biology, 2003, 40, 287-288.	0.9	3
85	Mutation in a calpain-like protease affects the posttranslational mannosylation of phosphatases in Aspergillus nidulans. Fungal Genetics and Biology, 2003, 38, 220-227.	0.9	18
86	The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway. Fungal Genetics and Biology, 2003, 39, 286-295.	0.9	19
87	The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium. Brazilian Journal of Microbiology, 2003, 34, 161-164.	0.8	22
88	Identification of genes involved in terbinafine resistance in Aspergillus nidulans. Letters in Applied Microbiology, 2002, 35, 228-232.	1.0	11
89	Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417, 459-463.	13.7	1,074

90 Antifungal Target Selection in Aspergillus nidulans. , 2002, , 215-230.

6

#	Article	IF	CITATIONS
91	The Aspergillus nidulans pyrG89 Mutation Alters Glycosylation of Secreted Acid Phosphatase. Fungal Genetics and Biology, 2001, 32, 113-120.	0.9	6
92	18S-rDNA SEQUENCING, ENZYME PATTERNS AND MORPHOLOGICAL CHARACTERIZATION OF TRICHOPHYTON ISOLATES. Brazilian Journal of Microbiology, 2001, 32, 179-186.	0.8	1
93	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 779-782.	1.7	1
94	Erratum to "Pathogenic characteristics of Escherichia coli strain isolated from newborn piglets with diarrhoea in Brazil― Veterinary Microbiology, 2001, 78, 91.	0.8	1
95	Effect of sub-MICs of antimycotics on expression of intracellular esterase of Trichophyton rubrum. Medical Mycology, 2001, 39, 129-133.	0.3	4
96	Pathogenic characteristics of Escherichia coli strains isolated from newborn piglets with diarrhea in Brazil. Veterinary Microbiology, 2000, 76, 51-59.	0.8	24
97	The levels of mRNA expressed by gene palF of A. nidulans do not appear to be pH regulated. Fungal Genetics Reports, 2000, 47, 72-73.	0.6	2
98	The nucleation of microtubules in Aspergillus nidulans germlings. Genetics and Molecular Biology, 1999, 22, 309-313.	0.6	3
99	Identification and linkage mapping of thephsAgene ofAspergillus nidulans, where mutation affects growth and pigmentation of colonies in a temperature- and pH-dependent way. FEMS Microbiology Letters, 1999, 171, 103-106.	0.7	7
100	The gene that determines resistance to tioconazole and to acridine derivatives in Aspergillus nidulans may have a corresponding gene in Trichophyton rubrum. Mycopathologia, 1998, 143, 71-75.	1.3	8
101	The areAr mutations of Aspergillus nidulans confer low pH sensitivity in the presence of ammonium as the only nitrogen source. Letters in Applied Microbiology, 1998, 27, 54-56.	1.0	1
102	The sequence of palF, an environmental pH response gene in Aspergillus nidulans. Gene, 1997, 194, 163-167.	1.0	60
103	In vitro susceptibility ofTrichophyton rubrum isolates to griseofulvin and tioconazole. Induction and isolation of a resistant mutant to both antimycotic drugs. Mycopathologia, 1996, 135, 141-143.	1.3	41
104	Purification of Neurospora crassa alkaline phosphatase without DNAse activity for use in molecular biology. World Journal of Microbiology and Biotechnology, 1995, 11, 505-507.	1.7	6
105	The effect of gene tubC on the vegetative growth of benomyl-resistant strains ofAspergillus nidulans. FEMS Microbiology Letters, 1994, 120, 183-186.	0.7	3
106	Nitrite toxicity inAspergillus nidulans: Effect of mutation at thenihB gene. World Journal of Microbiology and Biotechnology, 1992, 8, 477-479.	1.7	2
107	Effect of citrate on radial growth and conidiation of the mould Aspergillus nidulans. World Journal of Microbiology and Biotechnology, 1991, 7, 609-612.	1.7	1
108	pH and acid phosphatase determinations after growth of Aspergillus nidulans on solid medium. Fungal Genetics Reports, 1991, 38, 78-79.	0.6	3

#	Article	IF	CITATIONS
109	Aspergillus and mouse share a new class of â€~zinc finger' protein. Trends in Genetics, 1989, 5, 291-292.	2.9	27
110	Nitrite toxicity inAspergillus nidulans: a new locus in aproA1 pabaA6 yA2strain. Genetical Research, 1983, 41, 203-207.	0.3	4
111	Two-way selection of mutants and revertants to chloroneb resistance in Aspergillus nidulans. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 96, 31-39.	0.4	3
112	Identification and linkage mapping of the phsA gene of Aspergillus nidulans, where mutation affects growth and pigmentation of colonies in a temperature- and pH-dependent way. , 0, .		2
113	Antifungal Target Selection in Aspergillus nidulans: Using Bioinformatics to Make the Difference. , 0, , 215-230.		2
114	Peptidase Regulation in Trichophyton rubrum Is Mediated by the Synergism Between Alternative Splicing and StuA-Dependent Transcriptional Mechanisms. Frontiers in Microbiology, 0, 13, .	1.5	3