Tianhao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5135039/publications.pdf

Version: 2024-02-01

330143
37
g-index
2001
2091
citing authors

#	Article	IF	CITATIONS
1	The functional role of micro <scp>RNA</scp> s in alcoholic liver injury. Journal of Cellular and Molecular Medicine, 2014, 18, 197-207.	3.6	106
2	Functional and Structural Features of Cholangiocytes in Health and Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 368-380.	4.5	80
3	Kupffer Cells. American Journal of Pathology, 2020, 190, 2185-2193.	3.8	80
4	Regulation of the Extrinsic Apoptotic Pathway by MicroRNA-21 in Alcoholic Liver Injury. Journal of Biological Chemistry, 2014, 289, 27526-27539.	3.4	78
5	Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology, 2017, 66, 528-541.	7.3	67
6	Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. Journal of Pineal Research, 2020, 68, e12639.	7.4	63
7	Regulation of Cellular Senescence by miR-34a in Alcoholic Liver Injury. American Journal of Pathology, 2017, 187, 2788-2798.	3.8	60
8	The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. Journal of Biological Chemistry, 2017, 292, 11336-11347.	3.4	57
9	Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. Laboratory Investigation, 2016, 96, 1256-1267.	3.7	47
10	Regulators of Cholangiocyte Proliferation. Gene Expression, 2017, 17, 155-171.	1.2	47
11	Functional Role of Cellular Senescence in Biliary Injury. American Journal of Pathology, 2015, 185, 602-609.	3.8	46
12	Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miRâ€200b downâ€regulation. FASEB Journal, 2017, 31, 4305-4324.	0.5	45
13	Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology, 2017, 65, 544-559.	7.3	43
14	Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Letters, 2017, 386, 179-188.	7.2	41
15	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â [*] /â [*] mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	3.7	41
16	Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology, 2021, 74, 2684-2698.	7.3	35
17	Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethalâ€7 microRNA. Hepatology, 2019, 69, 2562-2578.	7.3	32
18	The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1–Mediated Biliary Senescence. American Journal of Pathology, 2018, 188, 2264-2280.	3.8	31

#	Article	IF	CITATIONS
19	The emerging role of cellular senescence in renal diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 2087-2097.	3.6	31
20	The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. Journal of Pineal Research, 2021, 70, e12699.	7.4	31
21	miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation. American Journal of Pathology, 2017, 187, 570-580.	3.8	29
22	Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2â^'/â^' mouse model of primary sclerosing cholangitis (PSC). EBioMedicine, 2019, 48, 130-142.	6.1	29
23	Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology, 2021, 74, 164-182.	7.3	25
24	Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. American Journal of Physiology - Renal Physiology, 2018, 315, G385-G398.	3.4	24
25	The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology, 2021, 73, 2411-2428.	7.3	24
26	Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidaseâ€A/5â€Hydroxytryptamine/5â€Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology, 2020, 71, 990-1008.	7.3	23
27	Bile Acid Receptor Therapeutics Effects on Chronic Liver Diseases. Frontiers in Medicine, 2020, 7, 15.	2.6	23
28	Proâ€inflammatory signalling and gutâ€liver axis in nonâ€alcoholic and alcoholic steatohepatitis: Differences and similarities along the path. Journal of Cellular and Molecular Medicine, 2020, 24, 5955-5965.	3.6	22
29	Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe?. International Journal of Molecular Sciences, 2019, 20, 1869.	4.1	21
30	Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB Journal, 2019, 33, 4610-4625.	0.5	21
31	Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 [/] Mouse Model of Primary Sclerosing Cholangitis. Gene Expression, 2020, 20, 89-103.	1.2	20
32	Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1525-1539.	3.8	18
33	Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology, 2020, 72, 2219-2227.	7.3	18
34	Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. Laboratory Investigation, 2020, 100, 837-848.	3.7	18
35	Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice. American Journal of Pathology, 2017, 187, 1093-1105.	3.8	17
36	A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS ONE, 2018, 13, e0209053.	2.5	17

#	Article	IF	Citations
37	The Functional Roles of Immune Cells in Primary Liver Cancer. American Journal of Pathology, 2022, 192, 826-836.	3.8	17
38	Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology, 2021, 74, 1845-1863.	7.3	16
39	The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expression, 2020, 20, 77-88.	1.2	16
40	Role of stem cells during diabetic liver injury. Journal of Cellular and Molecular Medicine, 2016, 20, 195-203.	3.6	15
41	Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Frontiers in Molecular Biosciences, 2021, 8, 803098.	3.5	15
42	Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. American Journal of Pathology, 2017, 187, 1551-1565.	3.8	14
43	Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. Laboratory Investigation, 2019, 99, 764-776.	3.7	14
44	Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Laboratory Investigation, 2021, 101, 328-340.	3.7	14
45	Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers, 2019, 11, 1652.	3.7	13
46	Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. American Journal of Pathology, 2020, 190, 1018-1029.	3.8	13
47	Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells, 2021, 10, 2072.	4.1	13
48	Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. American Journal of Physiology - Renal Physiology, 2017, 313, G410-G418.	3.4	12
49	Possible application of melatonin treatment in human diseases of the biliary tract. American Journal of Physiology - Renal Physiology, 2019, 317, G651-G660.	3.4	11
50	Knockout of the Tachykinin Receptor 1 in the Mdr2â^'/â^' (Abcb4â^'/â^') Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. American Journal of Pathology, 2020, 190, 2251-2266.	3.8	9
51	Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology, 2022, 75, 797-813.	7.3	9
52	Functional role of microvesicles in gastrointestinal malignancies. Annals of Translational Medicine, 2013, 1, 4.	1.7	9
53	Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells, 2020, 9, 436.	4.1	7
54	Mast cells in liver disease progression: An update on current studies and implications. Hepatology, 2022, 75, 213-218.	7.3	7

#	Article	IF	Citations
55	Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers, 2022, 14, 1442.	3.7	6
56	The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells, 2022, 11, 1591.	4.1	6
57	Mast cells selectively target large cholangiocytes during biliary injury via H2HRâ€mediated cAMP/pERK1/2 signaling. Hepatology Communications, 2022, 6, 2715-2731.	4.3	6
58	FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2â^'/â^' Mouse Model of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 1574-1588.	4.3	2
59	The Role of Cholangiocyte Cell Death in the Development of Biliary Diseases. , 2017, , 23-38.		1
60	Pleiotropic effects of CD5L in hepatic inflammation and fibrosis. EBioMedicine, 2019, 44, 22-23.	6.1	1
61	Laser Capture Microdissection of from Frozen Heart Tissues. Methods in Molecular Biology, 2021, 2319, 105-110.	0.9	1
62	653 microRNA-34a Regulates Alcoholic Hepatitis Through SIRT1/NF-kappa;B Pathway. Gastroenterology, 2016, 150, S1043.	1.3	0
63	290 YAP Promotes Hepatic Fatty Acids Uptake By Upregulation of CD36. Gastroenterology, 2016, 150, S1026.	1.3	0
64	Tu1619 Blockade of Substance P Receptor attenuates Cellular Senescence and Liver Fibrosis in the Mdr2â°'/â°' Mouse Model of Primary Sclerosing Cholangitis. Gastroenterology, 2016, 150, S1150-S1151.	1.3	0
65	Tu1618 Treatment of Biliary Injury With Small Cholangiocyte Therapy Decreases Stellate Cell Activation via Mediation of Cellular Senescence. Gastroenterology, 2016, 150, S1150.	1.3	0
66	Tu1694 Regulation of Cellular Senescence Associated Liver Fibrosis By Melatonin in Cholestatic Liver Injury. Gastroenterology, 2016, 150, S1165.	1.3	0
67	745 Inhibition of Hepatic Stellate Cell Activation by Stem Cell Derived Extracellular Vesicles and microRNAs During Cholestatic Liver Injury. Gastroenterology, 2016, 150, S1044-S1045.	1.3	0
68	287 Senescence of Activated Hepatic Stellate Cells Limits Liver Fibrosis During Alcoholic Liver Injury. Gastroenterology, 2016, 150, S1025.	1.3	0
69	Mo1476 YAP Links Hyperinsulinaemia and Hepatocellular Carcinoma. Gastroenterology, 2016, 150, S1125.	1.3	0
70	Characterization of Endothelial Dysfunction in Microrna-34A Knockout Mice with Alcoholic Liver Injury. Gastroenterology, 2017, 152, S1111.	1.3	0
71	Knockout of the Secretin Receptor (SR) in Experimental Primary Sclerosing Cholangitis Reduces Biliary Hyperplasia and Liver Fibrois through Decreased Expression of Epithelial-Mesenchymal Transitions (EMT) Traits and Cellular Senescence in Cholangiocytes. Gastroenterology, 2017, 152, S1155.	1.3	0
72	Depletion of Microrna-21 Reduces Infiltration of Macrophages and Neutrophils in the Liver and Attenuates Inflammatory Cytokine Production in Liver Macrophages During Experimental Cholestatic Liver Injury. Gastroenterology, 2017, 152, S1064.	1.3	0

#	Article	IF	CITATIONS
73	Stem Cell Derived Extracellular Vesicles Inhibits Liver Inflammation and Fibrosis in a Mouse Model of Primary Sclerosing Cholangitis. Gastroenterology, 2017, 152, S1066-S1067.	1.3	O
74	The Secretin/Secretin Receptor Axis is Required for Inflammatory Cell-Cell Communication Via Extracellular Vesicles Between Cholangiocytes Treated with Lipopolysaccharide. Gastroenterology, 2017, 152, S1067.	1.3	0
75	Inhibition of the Gonadotropin Releasing Hormone (GNRH)/GNRHR1 Axis with Cetrorelix Reduces Hepatic Fibrosis in MDR2 -/- Mice. Gastroenterology, 2017, 152, S1073.	1.3	0
76	Opposite effects of knocking out MT1 and MT2 melatonin receptor on senescence and fibrosis of cholangiocytes and hepatic stellate cells during cholestatic liver injury. FASEB Journal, 2018, 32, 415.10.	0.5	0
77	microRNAâ€34a Knockout Attenuates Endothelial Progenitor Dysfunction in Cholestatic Liver Injury. FASEB Journal, 2020, 34, 1-1.	0.5	0
78	Mast Cells Contribute to Hepatic Neurokinin1 Receptor Signaling, Subsequent Biliary Damage and Peribiliary Fibrosis Via TGFâ€1 Signaling in MDR2â€1†Mouse Model of Primary Scelrosing Cholangitis. FASEB Journal, 2022, 36, .	0.5	0