
Edgar VÃ;zquez Núñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134840/publications.pdf Version: 2024-02-01

<u>Ερααρ VÃ: 20μες ΝúÃ+ες</u>

#	Article	IF	CITATIONS
1	Use of Nanotechnology for the Bioremediation of Contaminants: A Review. Processes, 2020, 8, 826.	2.8	81
2	Physiological and biochemical response of plants to engineered NMs: Implications on future design. Plant Physiology and Biochemistry, 2017, 110, 226-235.	5.8	69
3	Remediating Polluted Soils Using Nanotechnologies: Environmental Benefits and Risks. Polish Journal of Environmental Studies, 2019, 28, 1013-1030.	1.2	48
4	Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. Journal of Hazardous Materials, 2018, 347, 196-217.	12.4	34
5	Coupling Plant Biomass Derived from Phytoremediation of Potential Toxic-Metal-Polluted Soils to Bioenergy Production and High-Value by-Products—A Review. Applied Sciences (Switzerland), 2021, 11, 2982.	2.5	33
6	Modifications of bacterial populations in anthracene contaminated soil. Applied Soil Ecology, 2012, 61, 113-126.	4.3	21
7	Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnology for Environmental Engineering, 2021, 6, 1.	3.3	21
8	Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration. Environmental Science and Pollution Research, 2020, 27, 28607-28622.	5.3	18
9	Green composites and their contribution toward sustainability: A review. Polymers and Polymer Composites, 2021, 29, S1588-S1608.	1.9	18
10	Environmental behavior of engineered nanomaterials in terrestrial ecosystems: Uptake, transformation and trophic transfer. Current Opinion in Environmental Science and Health, 2018, 6, 42-46.	4.1	15
11	A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere, 2018, 28, 697-712.	4.0	14
12	The bacterial community structure in an alkaline saline soil spiked with anthracene. Electronic Journal of Biotechnology, 2013, 16, .	2.2	10
13	Effects of Nanoparticles on Germination, Growth, and Plant Crop Development. , 2018, , 77-110.		8
14	A biorefinery based on the biomechanical configuration of the digestive system of a ruminant for ABE production: a consolidated bioprocessing approach. Biomass Conversion and Biorefinery, 2021, 11, 2079-2088.	4.6	8
15	Impact of moisture dynamic and sun light on anthracene removal from soil. Biodegradation, 2009, 20, 191-198.	3.0	6
16	Incorporation of Nanoparticles into Plant Nutrients: The Real Benefits. , 2018, , 49-76.		5
17	Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers. , 2018, , 3-16.		5
18	Using Acetone as Solvent to Study Removal of Anthracene in Soil Inhibits Microbial Activity and Alters Nitrogen Dynamics. Archives of Environmental Contamination and Toxicology, 2009, 57, 239-246.	4.1	3

#	Article	IF	CITATIONS
19	Effects of Nanoparticles on Plants, Earthworms, and Microorganisms. , 2018, , 161-181.		3
20	Determination of liquid–vapor equilibrium and critical properties of fatty acids for biodiesel production through molecular dynamics. Journal of Physics Condensed Matter, 2022, 34, 214002.	1.8	3
21	Synthesis and production of engineered nanomaterials for laboratory and industrial use. , 2019, , 3-30.		2
22	Kinetic Parameter Determination for Depolymerization of Biomass by Inverse Modeling and Metaheuristics. Processes, 2020, 8, 836.	2.8	1
23	Agronanobiotechnologies to Improve the Water Quality in Irrigation Systems. , 2018, , 141-157.		Ο
24	The Chemistry behind Nanotoxicological Processes in Living Systems. Nanotechnology in the Life Sciences, 2021, , 409-430.	0.6	0
25	Effect of Fe Nanoparticles of Seeds with Commercial Importance in Guanajuato, Mexico. , 0, , .		ο
26	Nutritional and Nutraceutical Properties of Mexican Traditional Mole Sauce. Molecules, 2022, 27, 966.	3.8	0