List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134709/publications.pdf Version: 2024-02-01

DEL-YING L

#	Article	lF	CITATIONS
1	Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, 43, 3063-3070.	1.0	1,239
2	Adoptive regulatory Tâ€cell therapy protects against cerebral ischemia. Annals of Neurology, 2013, 74, 458-471.	2.8	246
3	Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Research Reviews, 2017, 34, 77-87.	5.0	205
4	Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology, 2018, 134, 208-217.	2.0	202
5	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	2.8	168
6	Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Progress in Neurobiology, 2014, 114, 58-83.	2.8	164
7	Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain, 2017, 140, 1914-1931.	3.7	146
8	Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia. Stroke, 2015, 46, 2628-2636.	1.0	135
9	Essential Role of Program Death 1-Ligand 1 in Regulatory T-Cell–Afforded Protection Against Blood–Brain Barrier Damage After Stroke. Stroke, 2014, 45, 857-864.	1.0	106
10	<i>In Vivo</i> Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. Journal of Neuroscience, 2018, 38, 10168-10179.	1.7	85
11	Adoptive Regulatory T-Cell Therapy Preserves Systemic Immune Homeostasis After Cerebral Ischemia. Stroke, 2013, 44, 3509-3515.	1.0	82
12	The evolving role of neuroâ€immune interaction in brain repair after cerebral ischemic stroke. CNS Neuroscience and Therapeutics, 2018, 24, 1100-1114.	1.9	81
13	Pharmacological Induction of Heme Oxygenase-1 by a Triterpenoid Protects Neurons Against Ischemic Injury. Stroke, 2012, 43, 1390-1397.	1.0	80
14	Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Frontiers in Bioscience - Landmark, 2011, 16, 2653.	3.0	78
15	Transgenic Overexpression of Peroxiredoxin-2 Attenuates Ischemic Neuronal Injury <i>Via</i> Suppression of a Redox-Sensitive Pro-Death Signaling Pathway. Antioxidants and Redox Signaling, 2012, 17, 719-732.	2.5	72
16	C Chemokine Receptor Type 5 (CCR5)â€Mediated Docking of Transferred Tregs Protects Against Early Bloodâ€Brain Barrier Disruption After Stroke. Journal of the American Heart Association, 2017, 6, .	1.6	65
17	Enriching the Housing Environment for Mice Enhances Their NK Cell Antitumor Immunity via Sympathetic Nerve–Dependent Regulation of NKG2D and CCR5. Cancer Research, 2017, 77, 1611-1622.	0.4	64
18	The peripheral immune response after stroke—A double edge sword for bloodâ€brain barrier integrity. CNS Neuroscience and Therapeutics, 2018, 24, 1115-1128.	1.9	59

#	Article	IF	CITATIONS
19	<i>n</i> -3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Stroke, 2015, 46, 2943-2950.	1.0	58
20	The blood brain barrier in cerebral ischemic injury – Disruption and repair. Brain Hemorrhages, 2020, 1, 34-53.	0.4	51
21	Mechanistic Insight into DNA Damage and Repair in Ischemic Stroke: Exploiting the Base Excision Repair Pathway as a Model of Neuroprotection. Antioxidants and Redox Signaling, 2011, 14, 1905-1918.	2.5	49
22	Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in Bioscience - Elite, 2011, E3, 604-615.	0.9	47
23	Rosiglitazone ameliorates tissue plasminogen activatorâ€induced brain hemorrhage after stroke. CNS Neuroscience and Therapeutics, 2019, 25, 1343-1352.	1.9	45
24	Recent advances and perspectives of postoperative neurological disorders in the elderly surgical patients. CNS Neuroscience and Therapeutics, 2022, 28, 470-483.	1.9	35
25	Aging Neurovascular Unit and Potential Role of DNA Damage and Repair in Combating Vascular and Neurodegenerative Disorders. Frontiers in Neuroscience, 2019, 13, 778.	1.4	34
26	Apurinic/Apyrimidinic Endonuclease 1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury. Antioxidants and Redox Signaling, 2015, 22, 135-148.	2.5	31
27	ILâ€⊋mAb reduces demyelination after focal cerebral ischemia by suppressing CD8 ⁺ T cells. CNS Neuroscience and Therapeutics, 2019, 25, 532-543.	1.9	31
28	Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice. Stroke, 2021, 52, 4043-4053.	1.0	31
29	HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity. CNS and Neurological Disorders - Drug Targets, 2013, 12, 325-337.	0.8	29
30	ACC1 (Acetyl Coenzyme A Carboxylase 1) Is a Potential Immune Modulatory Target of Cerebral Ischemic Stroke. Stroke, 2019, 50, 1869-1878.	1.0	29
31	Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Frontiers in Bioscience - Elite, 2012, E4, 1926.	0.9	27
32	Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1- and p53-Dependent Prodeath Pathways After Ischemic Injury. Stroke, 2013, 44, 1124-1134.	1.0	27
33	MicroRNA-15b Deteriorates Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis by Downregulating Bcl-2 and MAPK3. Journal of Investigative Medicine, 2018, 66, 39-45.	0.7	27
34	Targeting neutrophils as a novel therapeutic strategy after stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2150-2161.	2.4	23
35	Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in Bioscience - Elite, 2011, E3, 978-988.	0.9	23
36	Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Medical Gas Research, 2016, 6, 194.	1.2	21

#	Article	IF	CITATIONS
37	Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry. Pain, 2018, 159, 894-906.	2.0	19
38	Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Frontiers in Neuroscience, 2019, 13, 758.	1.4	19
39	Microglial phagocytosis and regulatory mechanisms after stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1579-1596.	2.4	19
40	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	1.7	17
41	Cancer Exacerbates Ischemic Brain Injury Via Nrp1 (Neuropilin 1)-Mediated Accumulation of Regulatory T Cells Within the Tumor. Stroke, 2018, 49, 2733-2742.	1.0	16
42	RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 952-965.	2.4	16
43	PRO: Regulatory T Cells Are Protective in Ischemic Stroke. Stroke, 2013, 44, e85-e86.	1.0	15
44	Divergent Effect of Dezocine, Morphine and Sufentanil on Intestinal Motor Function in Rats. International Journal of Medical Sciences, 2015, 12, 848-852.	1.1	12
45	Delivery of Neurotherapeutics Across the Blood Brain Barrier in Stroke. Current Pharmaceutical Design, 2012, 18, 3704-3720.	0.9	10
46	A novel combination of the Arndt endobronchial blocker and the laryngeal mask airway ProSealâ,,¢ provides one-lung ventilation for thoracic surgery. Experimental and Therapeutic Medicine, 2014, 8, 1628-1632.	0.8	10
47	Dose selection of central or peripheral administration of sufentanil affect opioid induced cough?: a prospective, randomized, controlled trial. BMC Anesthesiology, 2018, 18, 38.	0.7	10
48	Remifentanil Preconditioning Attenuates Hepatic Ischemia-Reperfusion Injury in Rats via Neuronal Activation in Dorsal Vagal Complex. Mediators of Inflammation, 2018, 2018, 1-10.	1.4	9
49	Indispensable role of β-arrestin2 in the protection of remifentanil preconditioning against hepatic ischemic reperfusion injury. Scientific Reports, 2019, 9, 2087.	1.6	9
50	Coming to the Rescue: Regulatory T Cells for Promoting Recovery After Ischemic Stroke. Stroke, 2021, 52, e837-e841.	1.0	9
51	The 100 most ited articles about the role of neurovascular unit in stroke 2001–2020: A bibliometric analysis. CNS Neuroscience and Therapeutics, 2021, 27, 743-752.	1.9	8
52	Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Translational Stroke Research, 2021, 12, 695-710.	2.3	7
53	Anti-inflammatory signaling: the point of convergence for medical gases in neuroprotection against ischemic stroke. Medical Gas Research, 2016, 6, 227.	1.2	7
54	Mechanisms of microRNA-mediated regulation of angiogenesis. Frontiers in Bioscience - Elite, 2010, E2, 1304-1319.	0.9	6

#	Article	IF	CITATIONS
55	Stroke Exacerbates Cancer Progression by Upregulating LCN2 in PMN-MDSC. Frontiers in Immunology, 2020, 11, 299.	2.2	6
56	Effect of remote ischemic preconditioning among donors and recipients following pediatric liver transplantation: A randomized clinical trial. World Journal of Gastroenterology, 2021, 27, 345-357.	1.4	6
57	Perioperative stroke: A perspective on challenges and opportunities for experimental treatment and diagnostic strategies. CNS Neuroscience and Therapeutics, 2022, 28, 497-509.	1.9	6
58	Visualizing regulatory lymphocytic responses to predict neurological outcome after stroke. CNS Neuroscience and Therapeutics, 2021, 27, 867-868.	1.9	5
59	Somatosensory evoked potential from S1 nerve root stimulation. European Spine Journal, 2011, 20, 1613-1619.	1.0	4
60	The Critical Roles of Immune Cells in Acute Brain Injuries. , 2014, , 9-25.		4
61	Intranasal Delivery of Therapeutic Peptides for Treatment of Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2019, , 65-73.	0.1	3
62	Cognitive declines after perioperative covert stroke: Recent advances and perspectives. Current Opinion in Anaesthesiology, 2020, 33, 651-654.	0.9	3
63	Sequential one-lung ventilation using one Arndt endobronchial blocker in a pediatric patient undergoing bilateral, video-assisted thoracoscopic surgery (VATS). Journal of Clinical Anesthesia, 2009, 21, 464.	0.7	2
64	Plasma MicroRNA-21 Predicts Postoperative Pulmonary Complications in Patients Undergoing Pneumoresection. Mediators of Inflammation, 2016, 2016, 1-8.	1.4	2
65	Neurovascular unit protection—novel therapeutic targets and strategies. CNS Neuroscience and Therapeutics, 2021, 27, 5-6.	1.9	2
66	Recent highlights in periopeative neurological disorders, from bench to bedside. CNS Neuroscience and Therapeutics, 2022, 28, 467-469.	1.9	2
67	Morphological Assessments of Global Cerebral Ischemia: Degenerated Cells. Springer Protocols, 2012, , 19-28.	0.1	0
68	How Do Subcellular Organelles Participate in Preconditioning-Conferred Neuroprotection?. , 2013, , 387-427.		0
69	Abstract TMP28: <i>De Novo</i> Fatty Acid Synthesis In Cd4 ⁺ T Cells After Cerebral Ischemic Stroke - A New Target of Post-stroke Immune Modulation. Stroke, 2019, 50, .	1.0	0
70	Abstract WP312: Rosiglitazone Ameliorates Tissue Plasminogen Activator-Induced Hemorrhagic Transformation After Stroke via Promoting Phagocytic Activity of Microglia. Stroke, 2020, 51, .	1.0	0