Maarten de Groot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134541/publications.pdf

Version: 2024-02-01

516710 610901 47 702 16 24 citations h-index g-index papers 47 47 47 1021 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biological Conservation, 2007, 136, 612-617.	4.1	89
2	Forest management history is an important factor in bark beetle outbreaks: Lessons for the future. Forest Ecology and Management, 2019, 433, 467-474.	3.2	44
3	The effects of a large-scale ice storm event on the drivers of bark beetle outbreaks and associated management practices. Forest Ecology and Management, 2018, 408, 195-201.	3.2	39
4	Differential short-term response of functional groups to a change in forest management in a temperate forest. Forest Ecology and Management, 2016, 376, 256-264.	3.2	35
5	Vibrational Communication Networks: Eavesdropping and Biotic Noise. Animal Signals and Communication, 2014, , 93-123.	0.8	33
6	Evaluating the influence of integrative forest management on old-growth habitat structures in a temperate forest region. Biological Conservation, 2017, 216, 101-107.	4.1	33
7	Energetic cost of vibrational signalling in a leafhopper. Behavioral Ecology and Sociobiology, 2015, 69, 815-828.	1.4	32
8	Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. Forest Ecology and Management, 2019, 450, 117495.	3.2	31
9	Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in <i>Nezara viridula</i>) (L.). Journal of Experimental Biology, 2010, 213, 3213-3222.	1.7	30
10	Increasing understanding of alien species through citizen science (Alien-CSI). Research Ideas and Outcomes, 0, 4, .	1.0	30
11	Duetting Behaviour in the Leafhopper Aphrodes makarovi (Hemiptera: Cicadellidae). Journal of Insect Behavior, 2012, 25, 419-440.	0.7	25
12	Distribution modelling as an approach to the conservation of a threatened alpine endemic butterfly (Lepidoptera: Satyridae). European Journal of Entomology, 2009, 106, 77-84.	1.2	24
13	Species identity cues: possibilities for errors during vibrational communication on plant stems. Behavioral Ecology, 2011, 22, 1209-1217.	2.2	20
14	Where to leave a message? The selection and adaptive significance of scent-marking sites for Eurasian lynx. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	20
15	On the spot: utilization of directional cues in vibrational communication of a stink bug. Scientific Reports, 2018, 8, 5418.	3.3	20
16	The Effect of Timing of Female Vibrational Reply on Male Signalling and Searching Behaviour in the Leafhopper Aphrodes makarovi. PLoS ONE, 2015, 10, e0139020.	2.5	18
17	Sender–receiver dynamics in leafhopper vibrational duetting. Animal Behaviour, 2016, 114, 139-146.	1.9	18
18	Fine root dynamics in Slovenian beech forests in relation to soil temperature and water availability. Trees - Structure and Function, 2016, 30, 375-384.	1.9	16

#	Article	IF	CITATIONS
19	Ophiostomatoid fungi associated with three spruce-infesting bark beetles in Slovenia. Annals of Forest Science, 2013, 70, 717-727.	2.0	15
20	RITY \hat{a} \in A phenology model of lps typographus as a tool for optimization of its monitoring. Ecological Modelling, 2019, 410, 108775.	2.5	14
21	Search behaviour of two hemipteran species using vibrational communication. Open Life Sciences, 2011, 6, 756-769.	1.4	13
22	Comparing environmental impacts of alien plants, insects and pathogens in protected riparian forests. NeoBiota, 0, 69, 1-28.	1.0	12
23	Biotic threats for 23 major non-native tree species in Europe. Scientific Data, 2021, 8, 210.	5.3	10
24	Corythucha arcuata (Say, 1832) (Hemiptera, Tingidae) in its invasive range in Europe: perception, knowledge and willingness to act in foresters and citizens. NeoBiota, 0, 69, 133-153.	1.0	9
25	Estimating the most effective and economical pheromone for monitoring the European spruce bark beetle. Journal of Applied Entomology, 2021, 145, 312-325.	1.8	8
26	Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs. Scientific Data, 2022, 9, 62.	5.3	8
27	River distance, stand basal area, and climatic conditions are the main drivers influencing lying deadwood in riparian forests. Forest Ecology and Management, 2022, 520, 120415.	3.2	7
28	Cucujus cinnaberinus (Scopoli, 1763) at its terra typica in Slovenia: historical overview, distribution patterns and habitat selection. Nature Conservation, 0, 19, 219-229.	0.0	6
29	Contrasting effects of altitude on species groups with different traits in a non-fragmented montane temperate forest. Nature Conservation, 0, 37, 99-121.	0.0	6
30	Forest management, site characteristics and climate change affect multiple biotic threats in riparian forests. Forest Ecology and Management, 2022, 508, 120041.	3.2	6
31	Temperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its range. Journal of Insect Conservation, 2015, 19, 891-899.	1.4	5
32	Private Forest Owner Characteristics Affect European Spruce Bark Beetle Management under an Extreme Weather Event and Host Tree Density. Forests, 2021, 12, 346.	2.1	5
33	Where to search: the use of opportunistic data for the detection of an invasive forest pest. Biological Invasions, 2022, 24, 3523-3537.	2.4	5
34	Spotting the pests of tomorrowâ€"Sampling designs for detection of species associations with woody plants. Journal of Biogeography, 2019, 46, 2159-2173.	3.0	4
35	Opozorilni seznam potencialno invazivnih tujerodnih vrst v slovenskih gozdovih in možne poti vnosa teh vrst. Novice Iz Varstva Gozdov, 2017, 10, 8-15.	0.0	2
36	KratkoroÄna napoved ulova osmerozobega smrekovega lubadarja (Ips typographus) v kontrolno-lovne pasti tipa Theysohn za leto 2018. , 0, , .		2

#	Article	IF	CITATIONS
37	Assemblages of ophiostomatoid fungi vectored by Ips amitinus (Coleoptera: Scolytinae) on norway spruce depend on colonization time, position on the host tree and development stage. Sumarski List, 2018, 142, 178-178.	0.3	2
38	Sensitivity analysis, calibration and validation of a phenology model for Pityogenes chalcographus (CHAPY). Ecological Modelling, 2020, 430, 109137.	2.5	1
39	KratkoroÄni napovedi sanitarnega poseka smreke in jelke zaradi podlubnikov v Sloveniji v 2021. Napovedi O Zdravju Gozdov, 0, , .	0.0	1
40	KratkoroÄni napovedi sanitarnega poseka smreke in jelke zaradi podlubnikov v Sloveniji v 2020. Napovedi O Zdravju Gozdov, 0, , 1-4.	0.0	1
41	Agricultural landscape affects sexâ€specific differences in the abundance of Drosophila suzukii in raspberry orchards. Journal of Applied Entomology, 0, , .	1.8	1
42	Preverjanje kratkoroÄnih napovedi sanitarnega poseka smreke in jelke zaradi podlubnikov v Sloveniji v 2021. Napovedi O Zdravju Gozdov, 0, , .	0.0	1
43	Combining an Occurrence Model and a Quantitative Model for the Prediction of the Sanitary Felling of Norway Spruce Because of Bark Beetles. Forests, 2022, 13, 319.	2.1	1
44	Evaluating the spatiotemporal indicators of the population decline of a threatened large forest grouse. European Journal of Wildlife Research, 2017, 63, 1.	1.4	0
45	Napoved ulova smrekovih lubadarjev (Ips typographus in Pityogenes chalcographus) v kontrolne feromonske pasti tipa Theysohn za leto 2016. Napovedi O Zdravju Gozdov, 0, , .	0.0	O
46	Trendi in napovedi gostote populacij smrekovih podlubnikov po žledolomu 2014 v Sloveniji: stanje pomlad 2014. Napovedi O Zdravju Gozdov, 0, , .	0.0	0
47	KratkoroÄna napoved ulova osmerozobega smrekovega lubadarja (Ips typographus) v kontrolno-lovne pasti tipa Theysohn za leto 2017. Napovedi O Zdravju Gozdov, 0, 2017, 1-5.	0.0	О