
Qiuhong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5134530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Updated classification of norovirus genogroups and genotypes. Journal of General Virology, 2019, 100, 1393-1406.	1.3	535
2	Emerging and re-emerging coronaviruses in pigs. Current Opinion in Virology, 2019, 34, 39-49.	2.6	276
3	Comprehensive Review of Human Sapoviruses. Clinical Microbiology Reviews, 2015, 28, 32-53.	5.7	271
4	Distinct Characteristics and Complex Evolution of PEDV Strains, North America, May 2013–February 2014. Emerging Infectious Diseases, 2014, 20, 1620-8.	2.0	268
5	SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet, The, 2020, 395, 949-950.	6.3	264
6	Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Research, 2020, 286, 198045.	1.1	200
7	Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Research, 2016, 226, 20-39.	1.1	193
8	Pathology of US Porcine Epidemic Diarrhea Virus Strain PC21A in Gnotobiotic Pigs. Emerging Infectious Diseases, 2014, 20, 668-671.	2.0	177
9	Isolation and Characterization of Porcine Deltacoronavirus from Pigs with Diarrhea in the United States. Journal of Clinical Microbiology, 2015, 53, 1537-1548.	1.8	165
10	Comprehensive Comparison of Cultivable Norovirus Surrogates in Response to Different Inactivation and Disinfection Treatments. Applied and Environmental Microbiology, 2014, 80, 5743-5751.	1.4	164
11	Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Veterinary Microbiology, 2014, 173, 258-269.	0.8	150
12	Antigenic Relationships among Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus Strains. Journal of Virology, 2015, 89, 3332-3342.	1.5	96
13	Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection. Veterinary Research, 2015, 46, 134.	1.1	76
14	Characterization of a Pathogenic Full-Length cDNA Clone and Transmission Model for Porcine Epidemic Diarrhea Virus Strain PC22A. MBio, 2016, 7, e01451-15.	1.8	75
15	Genetic Characterization and Classification of Human and Animal Sapoviruses. PLoS ONE, 2016, 11, e0156373.	1.1	71
16	Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. Journal of Virology, 2017, 91, .	1.5	68
17	The Effects of Simvastatin or Interferon-α on Infectivity of Human Norovirus Using a Gnotobiotic Pig Model for the Study of Antivirals. PLoS ONE, 2012, 7, e41619.	1.1	65
18	Binding of Human GII.4 Norovirus Virus-Like Particles to Carbohydrates of Romaine Lettuce Leaf Cell Wall Materials. Applied and Environmental Microbiology, 2012, 78, 786-794.	1.4	62

QIUHONG WANG

#	Article	IF	CITATIONS
19	Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus. Preventive Veterinary Medicine, 2016, 123, 175-184.	0.7	60
20	Characterization of Emerging GII.g/GII.12 Noroviruses from a Gastroenteritis Outbreak in the United States in 2010. Journal of Clinical Microbiology, 2011, 49, 3234-3244.	1.8	56
21	Discovery and Genomic Characterization of Noroviruses from a Gastroenteritis Outbreak in Domestic Cats in the US. PLoS ONE, 2012, 7, e32739.	1.1	56
22	Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Archives of Virology, 2014, 159, 257-266.	0.9	54
23	Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain. Veterinary Research, 2015, 46, 109.	1.1	49
24	Stability of and Attachment to Lettuce by a Culturable Porcine Sapovirus Surrogate for Human Caliciviruses. Applied and Environmental Microbiology, 2012, 78, 3932-3940.	1.4	45
25	Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage. Veterinary Microbiology, 2017, 201, 62-71.	0.8	44
26	Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples. Journal of Virological Methods, 2018, 256, 116-122.	1.0	41
27	Attempts to grow human noroviruses, a sapovirus, and a bovine norovirus in vitro. PLoS ONE, 2018, 13, e0178157.	1.1	41
28	Deletion of both the Tyrosine-Based Endocytosis Signal and the Endoplasmic Reticulum Retrieval Signal in the Cytoplasmic Tail of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Pigs. Journal of Virology, 2019, 93, .	1.5	40
29	Molecular detection and genetic characterization of kobuviruses and astroviruses in asymptomatic local pigs in East Africa. Archives of Virology, 2014, 159, 1313-1319.	0.9	37
30	Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus. Veterinary Microbiology, 2015, 179, 213-218.	0.8	35
31	Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- <i>O</i> -Methyltransferase and the Endocytosis Signal of the Spike Protein. Journal of Virology, 2019, 93, .	1.5	35
32	The involvement of Fas/FasL interaction in porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus co-inoculation-associated lymphocyte apoptosis in vitro. Veterinary Microbiology, 2007, 122, 72-82.	0.8	33
33	Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. International Journal of Molecular Sciences, 2019, 20, 5478.	1.8	33
34	Porcine circovirus type 2 (PCV2) infection decreases the efficacy of an attenuated classical swine fever virus (CSFV) vaccine. Veterinary Research, 2011, 42, 115.	1.1	32
35	Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Veterinary Immunology and Immunopathology, 2010, 135, 234-242.	0.5	31
36	Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Archives of Virology, 2013, 158, 1583-1588.	0.9	31

QIUHONG WANG

#	Article	IF	CITATIONS
37	Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. Science of the Total Environment, 2014, 472, 757-766.	3.9	30
38	Recognition of Histo-Blood Group Antigen-Like Carbohydrates in Lettuce by Human GII.4 Norovirus. Applied and Environmental Microbiology, 2016, 82, 2966-2974.	1.4	30
39	Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research, 2019, 15, 26.	0.7	30
40	Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Veterinary Pathology, 2021, 58, 438-452.	0.8	30
41	The immunogenicity of DNA constructs co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus conjugated by GPGP linker in pigs. Veterinary Microbiology, 2010, 146, 189-199.	0.8	29
42	Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens, 2020, 9, 130.	1.2	28
43	Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Veterinary Microbiology, 2014, 168, 202-207.	0.8	27
44	Antiviral effect of theaflavins against caliciviruses. Journal of Antibiotics, 2017, 70, 443-447.	1.0	25
45	GTPase-activating protein-binding protein 1 (G3BP1) plays an antiviral role against porcine epidemic diarrhea virus. Veterinary Microbiology, 2019, 236, 108392.	0.8	24
46	Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens, 2022, 11, 79.	1.2	23
47	Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce. Applied and Environmental Microbiology, 2015, 81, 5085-5092.	1.4	22
48	Human sapovirus propagation in human cell lines supplemented with bile acids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32078-32085.	3.3	22
49	New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017. Archives of Virology, 2018, 163, 2485-2489.	0.9	21
50	Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain. Veterinary Research, 2017, 48, 61.	1.1	20
51	Deltacoronavirus Evolution and Transmission: Current Scenario and Evolutionary Perspectives. Frontiers in Veterinary Science, 2020, 7, 626785.	0.9	19
52	Bile acids LCA and CDCA inhibited porcine deltacoronavirus replication in vitro. Veterinary Microbiology, 2021, 257, 109097.	0.8	19
53	Abiotic Stress and Phyllosphere Bacteria Influence the Survival of Human Norovirus and Its Surrogates on Preharvest Leafy Greens. Applied and Environmental Microbiology, 2016, 82, 352-363.	1.4	17
54	The enhanced replication of an S-intact PEDV during coinfection with an S1 NTD-del PEDV in piglets. Veterinary Microbiology, 2019, 228, 202-212.	0.8	17

QIUHONG WANG

#	Article	IF	CITATIONS
55	SARSâ€CoVâ€2, SARSâ€CoV, and MERSâ€CoV encode circular RNAs of spliceosomeâ€independent origin. Journa Medical Virology, 2022, 94, 3203-3222.	of 2.5	17
56	Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis. Virus Research, 2020, 286, 198025.	1.1	15
57	Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain. Journal of Virology, 2016, 90, 1345-1358.	1.5	14
58	Characterization of porcine circovirus type 2 (PCV2) infection in swine lymphocytes using mitogen-stimulated peripheral blood lymphocytes from healthy PCV2-carrier pigs. Veterinary Immunology and Immunopathology, 2008, 124, 355-366.	0.5	13
59	Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains. Journal of Virological Methods, 2016, 234, 137-141.	1.0	12
60	Tissue Distribution and Visualization of Internalized Human Norovirus in Leafy Greens. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
61	Human Norovirus Histo-Blood Group Antigen (HBGA) Binding Sites Mediate the Virus Specific Interactions with Lettuce Carbohydrates. Viruses, 2019, 11, 833.	1.5	12
62	Integrating Bacterial and Viral Water Quality Assessment to Predict Swimming-Associated Illness at a Freshwater Beach: A Cohort Study. PLoS ONE, 2014, 9, e112029.	1.1	12
63	Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses, 2022, 14, 1317.	1.5	12
64	Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses, 2021, 13, 122.	1.5	10
65	Postharvest Survival of Porcine Sapovirus, a Human Norovirus Surrogate, on Phytopathogen-Infected Leafy Greens. Journal of Food Protection, 2015, 78, 1472-1480.	0.8	8
66	Roles of bile acids in enteric virus replication. Animal Diseases, 2021, 1, 2.	0.6	8
67	Mutations in Porcine Epidemic Diarrhea Virus nsp1 Cause Increased Viral Sensitivity to Host Interferon Responses and Attenuation <i>In Vivo</i> . Journal of Virology, 2022, 96, e0046922.	1.5	8
68	Genomic characterization of a US porcine kobuvirus strain. Archives of Microbiology, 2015, 197, 1033-1040.	1.0	7
69	Bovine rhinitis B virus is highly prevalent in acute bovine respiratory disease and causes upper respiratory tract infection in calves. Journal of General Virology, 2022, 103, .	1.3	5
70	Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Viruses, 2022, 14, 1225.	1.5	2
71	Intracoelomic Teratoma in an Eclectus Parrot (Eclectus roratus). , 2021, 35, 217-226.		0
72	Parvoviral enteritis and salmonellosis in raccoons with sudden death. Journal of Veterinary Diagnostic Investigation, 2021, 33, 104063872110387.	0.5	0