David Schilter

List of Publications by Citations

Source: https://exaly.com/author-pdf/5134081/david-schilter-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 1,243 35 33 g-index h-index citations papers 4.88 89 1,407 27.1 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
33	Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. <i>Chemical Reviews</i> , 2016 , 116, 8693-749	68.1	366
32	N,NWDiamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity. <i>Accounts of Chemical Research</i> , 2016 , 49, 1458-68	24.3	83
31	Dinuclear bis-beta-diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallo-supramolecular structures. <i>Dalton Transactions</i> , 2005 , 857-64	4.3	78
30	Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. <i>Nature Communications</i> , 2015 , 6, 7890	17.4	73
29	Multicopper models for the laccase active site: effect of nuclearity on electrocatalytic oxygen reduction. <i>Inorganic Chemistry</i> , 2014 , 53, 8505-16	5.1	70
28	Extended three-dimensional supramolecular architectures derived from trinuclear (bis-beta-diketonato)copper(II) metallocycles. <i>Dalton Transactions</i> , 2006 , 3114-21	4.3	66
27	Self-assembled Metallo-supramolecular Systems Incorporating EDiketone Motifs as Structural Elements. <i>Advances in Inorganic Chemistry</i> , 2006 , 59, 1-37	2.1	64
26	New discrete and polymeric supramolecular architectures derived from dinuclear (bis-beta-diketonato)copper(II) metallocycles. <i>Dalton Transactions</i> , 2006 , 3977-84	4.3	61
25	Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. <i>Inorganic Chemistry</i> , 2012 , 51, 2338-48	5.1	60
24	Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures. <i>Inorganic Chemistry</i> , 2012 , 51, 8931-41	5.1	36
23	Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo, and FeMn Carbonyl Dithiolates. <i>Organometallics</i> , 2014 , 33, 858-867	3.8	32
22	And the winner isazadithiolate: an amine proton relay in the [FeFe] hydrogenases. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13518-20	16.4	31
21	Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12385-95	16.4	25
20	Birch-Type Hydrogenation of Few-Layer Graphenes: Products and Mechanistic Implications. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14980-14986	16.4	23
19	Graphene in the making. <i>Nature Nanotechnology</i> , 2019 , 14, 914-918	28.7	21
18	Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4202-4210	16.4	18
17	N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe] Hydrogenases: Stability and Complexation. <i>Inorganic Chemistry</i> , 2015 , 54, 5717-24	5.1	14

LIST OF PUBLICATIONS

16	Synthesis and vibrational spectroscopy of (57)Fe-labeled models of [NiFe] hydrogenase: first direct observation of a nickel-iron interaction. <i>Chemical Communications</i> , 2014 , 50, 13469-72	5.8	12
15	Nickel-Molybdenum and Nickel-Tungsten Dithiolates: Hybrid Models for Hydrogenases and Hydrodesulfurization. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4638-4642	2.3	11
14	Platinum(II) and palladium(II) metallomacrocycles derived from cationic 4,4\(\mathbb{W}\)bipyridinium, 3-aminopyrazinium and 2-aminopyrimidinium ligands. <i>Dalton Transactions</i> , 2010 , 239-47	4.3	9
13	Nickel-iron dithiolates related to the deactivated [NiFe]-hydrogenases. <i>Dalton Transactions</i> , 2012 , 41, 13324-9	4.3	8
12	ESI-MS and thermal melting studies of nanoscale platinum(II) metallomacrocycles with DNA. <i>Dalton Transactions</i> , 2010 , 39, 11263-71	4.3	8
11	Und der Gewinner ist 🛭 Azadithiolat 🖺 in Amin-Protonenrelais in [FeFe]-Hydrogenasen. Angewandte Chemie, 2013 , 125, 13760-13762	3.6	7
10	Synthesis of a 2,2-Dichloroimidazolidine-4,5-dione and its Application in a Chlorodehydroxylation. <i>Organic Syntheses</i> ,93, 413-421	1.2	5
9	Synthetic Models for Nickel-Iron Hydrogenase Featuring Redox-Active Ligands. <i>Australian Journal of Chemistry</i> , 2017 , 70, 505-515	1.2	3
8	Nickel-Iron Hydrogenases: High-Resolution Crystallography Resolves the Hydride, but Not the Debate. <i>ChemBioChem</i> , 2015 , 16, 1712-4	3.8	3
7	[4-(Dimethylamino)pyridine-N]bis(pentane-2,4-dionato-Z O,O?)copper(II). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m1142-m1143		3
6	SYNTHESIS OF SELECTED TRANSITION METAL AND MAIN GROUP COMPOUNDS WITH SYNTHETIC APPLICATIONS. <i>Inorganic Syntheses</i> , 2018 , 155-204		1
5	Scalar coupling scales with bonding. <i>Nature Reviews Chemistry</i> , 2021 , 5, 598-598	34.6	O
4	(Ethane-1,2-diamine)dinitratopalladium(II). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005 , 61, m1940-m1942		
3	Synthesis of a 2,2-Dichloroimidazolidine-4,5-dione and its Application in a Chlorodehydroxylation413-4	121	
2	Physical methods for mechanistic understanding: general discussion. <i>Faraday Discussions</i> , 2019 , 220, 144-178	3.6	
1	Volatile molecule chooses to cooperate. <i>Nature Reviews Chemistry</i> , 2021 , 5, 143-143	34.6	_