Diogo Jurelevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomic analysis of microbial communities across a transect from low to highly hydrocarbonâ€contaminated soils in King George Island, Maritime Antarctica. Geobiology, 2022, 20, 98-111.	1.1	9
2	Genomic analyses of a novel bioemulsifier-producing Psychrobacillus strain isolated from soil of King George Island, Antarctica. Polar Biology, 2022, 45, 691-701.	0.5	4
3	Genetics and regulation of nitrogen fixation in Paenibacillus brasilensis PB24. Microbiological Research, 2021, 243, 126647.	2.5	6
4	Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs. Fuel, 2021, 288, 119731.	3.4	15
5	Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity. Environmental Pollution, 2021, 268, 115757.	3.7	12
6	Dissimilatory Iron-Reducing Microorganisms Are Present and Active in the Sediments of the Doce River and Tributaries Impacted by Iron Mine Tailings from the Collapsed Fundão Dam (Mariana, MG, Brazil). Minerals (Basel, Switzerland), 2021, 11, 244.	0.8	5
7	The Impact of Organic Fertilizer Produced with Vegetable Residues in Lettuce (Lactuca sativa L.) Cultivation and Antioxidant Activity. Sustainability, 2021, 13, 128.	1.6	6
8	Chemical and biological dispersants differently affect the bacterial communities of uncontaminated and oil-contaminated marine water. Brazilian Journal of Microbiology, 2020, 51, 691-700.	0.8	4
9	Microbial enhanced oil recovery potential of surfactin-producing Bacillus subtilis AB2.0. Fuel, 2020, 272, 117730.	3.4	32
10	Potential application of Pseudomonas stutzeri W228 for removal of copper and lead from marine environments. PLoS ONE, 2020, 15, e0240486.	1.1	8
11	Firmicutes in different soils of Admiralty Bay, King George Island, Antarctica. Polar Biology, 2019, 42, 2219-2226.	0.5	13
12	Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils. International Journal of Biological Macromolecules, 2018, 114, 18-25.	3.6	22
13	Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. MicrobiologyOpen, 2018, 7, e00550.	1.2	22
14	Response of the Bacterial Communities Associated With Maize Rhizosphere to Poultry Litter as an Organomineral Fertilizer. Frontiers in Environmental Science, 2018, 6, .	1.5	16
15	Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica. Microbial Ecology, 2017, 74, 810-820.	1.4	27
16	Whole-Genome Sequence of Rummeliibacillus stabekisii Strain PP9 Isolated from Antarctic Soil. Genome Announcements, 2016, 4, .	0.8	5
17	Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants. Journal of Environmental Management, 2016, 184, 473-479.	3.8	16
18	Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiology, 2015, 15, 240.	1.3	23

DIOGO JURELEVICIUS

#	Article	IF	CITATIONS
19	Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarctic Science, 2015, 27, 263-273.	0.5	28
20	Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 14-21.	2.5	60
21	Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiology, 2014, 14, 332.	1.3	51
22	Response of the Archaeal Community to Simulated Petroleum Hydrocarbon Contamination in Marine and Hypersaline Ecosystems. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	12
23	Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME Journal, 2014, 8, 1464-1475.	4.4	325
24	Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biology, 2014, 37, 1121-1131.	0.5	23
25	Does the essential oil of Lippia sidoidesCham. (pepper-rosmarin) affect its endophytic microbial community?. BMC Microbiology, 2013, 13, 29.	1.3	17
26	Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics, 2013, 13, 2776-2785.	1.3	18
27	Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms. Applied and Environmental Microbiology, 2013, 79, 5927-5935.	1.4	90
28	The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria. PLoS ONE, 2013, 8, e66565.	1.1	52
29	Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Applied Soil Ecology, 2012, 55, 1-9.	2.1	57
30	Distribution of alkane-degrading bacterial communities in soils from King George Island, Maritime Antarctic. European Journal of Soil Biology, 2012, 51, 37-44.	1.4	36
31	Insight from the draft genome of Dietzia cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential. Antonie Van Leeuwenhoek, 2012, 101, 289-302.	0.7	29
32	Polyphasic Analysis of the Bacterial Community in the Rhizosphere and Roots of Cyperus rotundus L. Grown in a Petroleum-Contaminated Soil. Journal of Microbiology and Biotechnology, 2010, 20, 862-870.	0.9	40
33	Effect of nitrate injection on the bacterial community in a water-oil tank system analyzed by PCR-DGGE. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 251-255.	1.4	15