
## Jorge P Muschietti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133509/publications.pdf Version: 2024-02-01



LODGE D MUSCHIETTI

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Keeping up with the RALFs: how these small peptides control pollen–pistil interactions in Arabidopsis.<br>New Phytologist, 2021, 229, 14-18.                                             | 7.3  | 12        |
| 2  | Prolineâ€rich extensinâ€like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS<br>Letters, 2021, 595, 2593-2607.                                                | 2.8  | 14        |
| 3  | The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. Journal of Experimental Botany, 2020, 71, 1239-1248.                                                 | 4.8  | 39        |
| 4  | Imaging and Analysis of the Content of Callose, Pectin, and Cellulose in the Cell Wall of Arabidopsis<br>Pollen Tubes Grown In Vitro. Methods in Molecular Biology, 2020, 2160, 233-242. | 0.9  | 4         |
| 5  | The MED30 subunit of mediator complex is essential for early plant development and promotes flowering in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2019, 146, .             | 2.5  | 10        |
| 6  | <i>Arabidopsis</i> pollen extensins LRX are required for cell wall integrity during pollen tube<br>growth. FEBS Letters, 2018, 592, 233-243.                                             | 2.8  | 75        |
| 7  | How many receptor-like kinases are required to operate a pollen tube. Current Opinion in Plant<br>Biology, 2018, 41, 73-82.                                                              | 7.1  | 32        |
| 8  | Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reproduction, 2018, 31, 159-169.                                                                     | 2.2  | 9         |
| 9  | Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5289-5294.                       | 7.1  | 201       |
| 10 | Co-immunoprecipitation of Plant Receptor Kinases. Methods in Molecular Biology, 2017, 1621, 109-112.                                                                                     | 0.9  | 0         |
| 11 | RALF4/19 peptides interact with LRX proteins to control pollen tube growth in <i>Arabidopsis</i> .<br>Science, 2017, 358, 1600-1603.                                                     | 12.6 | 239       |
| 12 | Two Arabidopsis late pollen transcripts are detected in cytoplasmic granules. Plant Direct, 2017, 1, e00012.                                                                             | 1.9  | 16        |
| 13 | Expression of Plant Receptor Kinases in Yeast. Methods in Molecular Biology, 2017, 1621, 21-27.                                                                                          | 0.9  | 2         |
| 14 | Pollen Aquaporins: The Solute Factor. Frontiers in Plant Science, 2016, 7, 1659.                                                                                                         | 3.6  | 11        |
| 15 | Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in<br><i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 1053-1077.                    | 6.6  | 78        |
| 16 | Pollen aquaporins: What are they there for?. Plant Signaling and Behavior, 2016, 11, e1217375.                                                                                           | 2.4  | 14        |
| 17 | An update on cell surface proteins containing extensin-motifs. Journal of Experimental Botany, 2016,<br>67, 477-487.                                                                     | 4.8  | 68        |
| 18 | Optimized Method for Growing In Vitro Arabidopsis thaliana Pollen Tubes. Methods in Molecular<br>Biology, 2015, 1242, 41-47.                                                             | 0.9  | 2         |

Jorge P Muschietti

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype. Journal of Plant Physiology, 2015, 185, 13-23.                                               | 3.5 | 13        |
| 20 | Imaging of Calcium Dynamics in Pollen Tube Cytoplasm. Methods in Molecular Biology, 2015, 1242, 49-57.                                                                                                  | 0.9 | 3         |
| 21 | Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant<br>Biology, 2014, 14, 248.                                                                                | 3.6 | 51        |
| 22 | Hormonal networks involved in apical hook development in darkness and their response to light.<br>Frontiers in Plant Science, 2014, 5, 52.                                                              | 3.6 | 93        |
| 23 | Overexpression of the Tomato Pollen Receptor Kinase LePRK1 Rewires Pollen Tube Growth to a<br>Blebbing Mode. Plant Cell, 2014, 26, 3538-3555.                                                           | 6.6 | 32        |
| 24 | Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses. Journal of Membrane Biology, 2014, 247, 107-125.                                                                  | 2.1 | 58        |
| 25 | Cajal Bodies Are Developmentally Regulated during Pollen Development and Pollen Tube Growth in<br>Arabidopsis thaliana. Molecular Plant, 2013, 6, 1355-1357.                                            | 8.3 | 8         |
| 26 | cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis.<br>Plant Molecular Biology, 2012, 80, 315-324.                                                   | 3.9 | 24        |
| 27 | New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible. Gene, 2012, 503, 165-176.                           | 2.2 | 64        |
| 28 | Oligomerization studies show that the kinase domain of the tomato pollen receptor kinase LePRK2 is necessary for interaction with LePRK1. Plant Physiology and Biochemistry, 2012, 53, 40-45.           | 5.8 | 5         |
| 29 | Mutations in Two Putative Phosphorylation Motifs in the Tomato Pollen Receptor Kinase LePRK2 Show<br>Antagonistic Effects on Pollen Tube Length. Journal of Biological Chemistry, 2011, 286, 4882-4891. | 3.4 | 16        |
| 30 | STIL, a peculiar molecule from styles, specifically dephosphorylates the pollen receptor kinase LePRK2<br>and stimulates pollen tube growth in vitro. BMC Plant Biology, 2010, 10, 33.                  | 3.6 | 28        |
| 31 | TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant Journal, 2010, 64, 1038-1047.                    | 5.7 | 82        |
| 32 | Abscisic acid (ABA) receptors: light at the end of the tunnel. F1000 Biology Reports, 2010, 2, .                                                                                                        | 4.0 | 9         |
| 33 | <i>AtTIP1;3</i> and <i>AtTIP5;1</i> , the only highly expressed Arabidopsis pollenâ€specific aquaporins, transport water and urea. FEBS Letters, 2008, 582, 4077-4082.                                  | 2.8 | 101       |
| 34 | The Pollen Receptor Kinase LePRK2 Mediates Growth-Promoting Signals and Positively Regulates<br>Pollen Germination and Tube Growth Â. Plant Physiology, 2008, 148, 1368-1379.                           | 4.8 | 78        |
| 35 | Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant Journal, 2005, 42, 492-503.                                        | 5.7 | 150       |
| 36 | Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nature Structural and Molecular Biology, 2005, 12, 1037-1044.                                                         | 8.2 | 211       |

Jorge P Muschietti

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Phytochrome Control of the Arabidopsis Transcriptome Anticipates Seedling Exposure to Light. Plant<br>Cell, 2005, 17, 2507-2516.                                                                                                                      | 6.6 | 53        |
| 38 | Finding Unexpected Patterns in Microarray Data. Plant Physiology, 2003, 133, 1717-1725.                                                                                                                                                               | 4.8 | 13        |
| 39 | The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate<br>in the presence of style extract. Proceedings of the National Academy of Sciences of the United States<br>of America, 2003, 100, 6860-6865. | 7.1 | 64        |
| 40 | A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the Pollen Receptor Kinase LePRK2[W]. Plant Cell, 2002, 14, 2277-2287.                                                                                       | 6.6 | 185       |
| 41 | Biochemical characterization of transducin, the G-protein of bovine retina. Biochemical Education, 1998, 26, 77-81.                                                                                                                                   | 0.1 | 0         |
| 42 | Pollen Tube Localization Implies a Role in Pollen–Pistil Interactions for the Tomato Receptor-like<br>Protein Kinases LePRK1 and LePRK2. Plant Cell, 1998, 10, 319-330.                                                                               | 6.6 | 146       |
| 43 | Pollen Tube Localization Implies a Role in Pollen-Pistil Interactions for the Tomato Receptor-Like<br>Protein Kinases LePRK1 and LePRK2. Plant Cell, 1998, 10, 319.                                                                                   | 6.6 | 75        |
| 44 | Purification and characterization of a soluble nucleoside diphosphate kinase in Trypanosoma cruzi.<br>Molecular and Biochemical Parasitology, 1995, 70, 119-129.                                                                                      | 1.1 | 17        |
| 45 | Molecular biology of male gametogenesis. Euphytica, 1994, 79, 245-250.                                                                                                                                                                                | 1.2 | 6         |
| 46 | LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA<br>hydrates and germinates abnormally and cannot achieve fertilization. Plant Journal, 1994, 6, 321-338.                                              | 5.7 | 209       |
| 47 | Adenylate cyclase activity in Cyanobacteria: activation by Ca2+-calmodulin and a calmodulin-like activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1055, 75-81.                                                                | 4.1 | 20        |
| 48 | Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1054, 231-236.                                                                        | 4.1 | 79        |
| 49 | Reconstitution of a light-stimulated adenylate cyclase from retina and Neurospora crassa<br>preparations. Characterization of the heterologous systems using normal and degenerative retinas.<br>FEBS Journal, 1989, 185, 205-210.                    | 0.2 | 7         |
| 50 | Sex steroid binding protein from Bufo arenarum: Further characterization. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 85, 401-405.                                                                                       | 0.6 | 5         |