Hideaki Sawada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/513346/publications.pdf

Version: 2024-02-01

78 papers 4,146 citations

331538 21 h-index 64 g-index

79 all docs

79 docs citations

79 times ranked 3576 citing authors

#	Article	IF	CITATIONS
1	Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, 395, 677-680.	13.7	1,883
2	Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskiteSr2FeReO6. Physical Review B, 1999, 59, 11159-11162.	1.1	438
3	Band Theory for Ground-State Properties and Excitation Spectra of PerovskiteLaMO3(M=Mn, Fe, Co,) Tj ETQq1 1	1 0.784314 2.9	4 rgBT /Ove <mark>rlo</mark>
4	Jahn-Teller distortion and magnetic structures inLaMnO3. Physical Review B, 1997, 56, 12154-12160.	1.1	164
5	First-principles study on electronic structures and phase stability of MnO and FeO under high pressure. Physical Review B, 1999, 59, 762-774.	1.1	116
6	Orbital and magnetic orderings in localizedt2gsystems,YTiO3andYVO3: Comparison with a more itinerantegsystemLaMnO3. Physical Review B, 1998, 58, 6831-6836.	1.1	114
7	First-principles calculation of the interaction between nitrogen atoms and vacancies in silicon. Physical Review B, 2000, 62, 1851-1858.	1.1	107
8	Electronic structure of oxygen vacancy in Ta2O5. Journal of Applied Physics, 1999, 86, 956-959.	1.1	102
9	Orbital and spin orderings inYVO3andLaVO3in the generalized gradient approximation. Physical Review B, 1996, 53, 12742-12749.	1.1	82
10	Inverse versus Normal NiAs Structures as High-Pressure Phases of FeO and MnO. Physical Review Letters, 1998, 81, 1027-1030.	2.9	65
11	The Dependence of the Superconducting Transition upon the Quench Temperature of YBa2Cu3Oy. Japanese Journal of Applied Physics, 1987, 26, L1054-L1056.	0.8	62
12	Magnetic susceptibility of normal state and superconductivity of La2â^xSrxCuO4. Physica C: Superconductivity and Its Applications, 1990, 166, 417-422.	0.6	45
13	First-principles study of interface structure and energy of Fe/NbC. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 045012.	0.8	38
14	Chemical misfit origin of solute strengthening in iron alloys. Acta Materialia, 2017, 131, 445-456.	3.8	36
15	Structural, electronic, and magnetic properties of Fe 16N2. Physical Review B, 1994, 50, 10004-10008.	1.1	34
16	Theoretical study of orbital ordering in YTiO3. Physica B: Condensed Matter, 1997, 237-238, 46-47.	1.3	34
17	Study on copper valency of high-tc superconductor YBa2Cu3O7â^'y by high temperature X-ray absorption spectroscopy. Solid State Communications, 1988, 65, 213-217.	0.9	33
18	Superconductivity and Crystal Structure of LaBa2Cu3-xOyCompounds. Japanese Journal of Applied Physics, 1987, 26, L1703-L1706.	0.8	28

#	Article	IF	Citations
19	First-principles study on the grain boundary embrittlement of bcc-Fe by Mn segregation. Physical Review Materials, 2019, 3, .	0.9	23
20	Study of the Infrared Properties of (La1-xSrx)2CuO4. Japanese Journal of Applied Physics, 1987, 26, L426-L428.	0.8	21
21	Full-Potential KKR Calculations for Point Defect Energies in Metals, based on the Generalized-Gradient Approximation: II. Impurity-Impurity Interaction Energies and Phase Diagrams. Materials Transactions, 2001, 42, 2216-2224.	0.4	21
22	Atomistic model of nitrogen-pair diffusion in silicon. Physical Review B, 2002, 65, .	1.1	21
23	Preparation and Property of La1.85Sr0.15CuO4Single Crystal. Japanese Journal of Applied Physics, 1987, 26, L386-L387.	0.8	20
24	First-principles analysis of the grain boundary segregation of transition metal alloying elements in \hat{I}^3 Fe. Computational Materials Science, 2022, 210, 111050.	1.4	20
25	Electronic band structure and lattice distortion in perovskite transition-metal oxides. Physica B: Condensed Matter, 1997, 237-238, 11-13.	1.3	19
26	Electronic origin of grain boundary segregation of Al, Si, P, and S in bcc-Fe: combined analysis of ab initio local energy and crystal orbital Hamilton population. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 015001.	0.8	18
27	Partitioning of Cr and Si between cementite and ferrite derived from first-principles thermodynamics. Acta Materialia, 2016, 102, 241-250.	3.8	17
28	Transition of the Interface between Iron and Carbide Precipitate From Coherent to Semi-Coherent. Metals, 2017, 7, 277.	1.0	17
29	Infrared properties of the oxygen-deficient triperovskite YBa2Cu3Oy compound. Solid State Communications, 1987, 64, 1047-1050.	0.9	16
30	Effects of the surface and interface on the magneto-optical properties in (Co, Ni)/Cu(001) ultrathin films. Physical Review B, 1996, 54, 15950-15957.	1.1	16
31	First-principles study of grain boundary embrittlement in Fe–Ni–S alloy. Computational Materials Science, 2012, 55, 17-22.	1.4	16
32	Dependence of Carbon Concentration and Alloying Elements on the Stability of Iron Carbides. ISIJ International, 2019, 59, 1128-1135.	0.6	16
33	Theoretical Prediction of Grain Boundary Segregation Using Nano-Polycrystalline Grain Boundary Model. Materials Transactions, 2021, 62, 575-581.	0.4	14
34	Changes in States of Carbon and Mechanical Properties with Aging at 50°C after Quenching in Low Carbon Steel. Materials Transactions, 2020, 61, 668-677.	0.4	14
35	Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations. Acta Materialia, 2003, 51, 551-559.	3.8	13
36	Interaction between Substitutional and Interstitial Elements in α iron Studied by First-principles Calculation. Materials Transactions, 2005, 46, 1140-1147.	0.4	13

#	Article	IF	CITATIONS
37	Superconducting Properties of La1.85Sr0.15CuO4Made by Hot-Press and Sinter Methods. Japanese Journal of Applied Physics, 1987, 26, L311-L313.	0.8	11
38	A Mechanism of Carbon-Cluster Strengthening through Atomic Simulations. Materials Transactions, 2020, 61, 2139-2148.	0.4	11
39	Theoretical Prediction of Grain Boundary Segregation Using Nano-Polycrystalline Grain Boundary Model. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 237-243.	0.2	10
40	Identification of a Structure with Two Superconducting Phases in L-Ba-Cu-O System (L=La or Y). Japanese Journal of Applied Physics, 1987, 26, L621-L623.	0.8	9
41	Application of Grain Boundary Segregation Prediction Using a Nano-Polycrystalline Grain Boundary Model to Transition Metal Solute Elements: Prediction of Grain Boundary Segregation of Mn and Cr in bcc-Fe Polycrystals. Materials Transactions, 2022, 63, 269-277.	0.4	9
42	Anomalous enhancement of superconductivity observed in La2CuO4â^'y. Solid State Communications, 1988, 65, 1539-1543.	0.9	8
43	Electronic band structure of La1 â^ xBaxMnO3. Journal of Physics and Chemistry of Solids, 1995, 56, 1719-1720.	1.9	8
44	Interaction between Substitutional and Interstitial Elements in .ALPHAFe Studied by First-Principles Calculation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 977-982.	0.2	8
45	Orbital and charge orderings and magnetism in perovskite-type transition-metal oxides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 63, 11-16.	1.7	7
46	Effects of Alloying Elements on Hydrogen Diffusion in Iron. ISIJ International, 2021, 61, 1287-1293.	0.6	7
47	Application of Grain Boundary Segregation Prediction Using a Nano-Polycrystalline Grain Boundary Model to Transition Metal Solute Elements: Prediction of Grain Boundary Segregation of Mn and Cr in bcc-Fe Polycrystals. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 421-429.	0.2	7
48	An answer to the carbon cluster in low-temperature aged ferritic low-carbon steel. Materials Characterization, 2020, 159, 110006.	1.9	6
49	Characterization of age hardening mechanism of low-temperature aged low-carbon steel by transmission electron microscopy. Materials Characterization, 2022, 183, 111579.	1.9	6
50	Weak Flax-Pinning Effect between 230 K and 40 K in La1.8Sr0.2CuO4. Japanese Journal of Applied Physics, 1987, 26, L383-L385.	0.8	5
51	Anomalous enhancement of fractional volume of superconductivity in La2CuO4â^'y due to field cooling process. Physica C: Superconductivity and Its Applications, 1988, 153-155, 1495-1496.	0.6	5
52	The Magneto-Optical Quantum Size Effect in bcc-Fe(001) and (110) Ultrathin Films. Materials Research Society Symposia Proceedings, 1995, 382, 237.	0.1	5
53	Phase stability and magnetic property of LaCo1 â^' xNixO3. Journal of Physics and Chemistry of Solids, 1995, 56, 1755-1757.	1.9	5
54	Changes in States of Carbon and Mechanical Properties with Aging at $50\hat{a}_{,f}$ after Quenching in Low Carbon Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 353-362.	0.2	5

#	Article	IF	CITATIONS
55	Analysis of the dynamic behavior and local structure of solid-solution carbon in age-hardened low-carbon steels by soft X-ray absorption spectroscopy. Materialia, 2020, 14, 100876.	1.3	5
56	Interaction between hydrogen and solute atoms in bcc iron. Computational Materials Science, 2021, 198, 110652.	1.4	5
57	Jahn-Teller distortion and magnetic structures in LaMnO3. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 879-880.	1.0	4
58	Effect of B on Growth of Recrystallized Grain of Ti-added Ultra-low Carbon Cold-rolled Steel Sheets. ISIJ International, 2018, 58, 1901-1909.	0.6	4
59	AN ATTEMPT OF FIRST PRINCIPLE CALCULATION OF ALLOY PHASE DIAGRAM., 1991,, 779-784.		4
60	First-principles computational tensile test of \hat{I}^3 -Fe grain boundaries considering the effect of magnetism: Electronic origin of grain boundary embrittlement due to Zn segregation. Physical Review Materials, 2022, 6, .	0.9	4
61	Magnetization Property of Annealed La1.85Sr0.15CuO4from 300 K to 5 K. Japanese Journal of Applied Physics, 1987, 26, L316-L317.	0.8	3
62	The 36K and 40K superconductivities of La2CuO4â^'y. Synthetic Metals, 1989, 29, 735-740.	2.1	3
63	Observation of Chemical State for Interstitial Solid Solution of Carbon in Low-carbon Steel by Soft X-ray Absorption Spectroscopy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 628-633.	0.1	3
64	Crystal Structure Analysis of Top Dross in Molten Zinc Bath by First Principles Calculation and Synchrotron X-ray Diffraction. ISIJ International, 2021, 61, 929-936.	0.6	3
65	Electronic structure analysis of magnetic properties of Fe16N2. Journal of Computer-Aided Materials Design, 1993, 1, 75-84.	0.7	2
66	Mechanism of Grain Boundary Embrittlement in Fe–Ni–S Alloys. ISIJ International, 2013, 53, 1289-1291.	0.6	2
67	Improvement of Anti-aging Property at Low Temperature by Cr Addition in Bake Hardenable Ultra Low Nitrogen Steels. ISIJ International, 2015, 55, 2648-2656.	0.6	2
68	Effect of B on Growth of Recrystallized Grain of Ti-added Ultra-low Carbon Cold-rolled Steel Sheets. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 221-229.	0.1	2
69	A Study on First Principle Calculation of Alloy Phase Diagram by Monte Carlo Simulation. Materials Research Society Symposia Proceedings, 1992, 291, 135.	0.1	1
70	Observation of Chemical State for Interstitial Solid Solution of Carbon in Low-carbon Steel by Soft X-ray Absorption Spectroscopy. ISIJ International, 2020, 60, 114-119.	0.6	1
71	Infrared Properties of the HighTcSuperconductor (La, Y)–Ba–Cu–O and La–Sr–Cu–O Compounds. Japanese Journal of Applied Physics, 1987, 26, 1011.	0.8	1
72	Correlation of Layered Structure and Superconductivity in (La, Y)–Ba–Cu–O System. Japanese Journal of Applied Physics, 1987, 26, 1065.	0.8	1

#	Article	IF	CITATIONS
73	Dependence of Carbon Concentration and Alloying Elements on the Stability of Iron Carbides. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 352-361.	0.1	1
74	A Mechanism of Carbon-Cluster Strengthening though Atomic Simulations. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 19-27.	0.2	1
75	Crystal Structure Analysis of Top Dross in a Molten Zinc Bath by First Principle Calculation and Synchrotron X-ray Diffraction. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 205-213.	0.1	0
76	Oxygen-Intercalation Effect upon Tetragonal-LaBa2Cu3â~xOy Compound Samples., 1987,, 1089-1093.		0
77	Importance of Controlling Microstructure Heterogeneity when Designing Steel., 2015,, 3-9.		0
78	A Determination of Carbon Solubility Limit in Bcc-Iron from Low-Temperature Age Hardening by Bayesian Inference. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 807-815.	0.1	0