Xiangsheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133420/publications.pdf

Version: 2024-02-01

81900 82547 5,397 76 39 72 citations g-index h-index papers 77 77 77 8662 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles $\langle i \rangle$ in Vivo $\langle i \rangle$. ACS Nano, 2013, 7, 9384-9395.	14.6	549
2	Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice. ACS Nano, 2015, 9, 3540-3557.	14.6	367
3	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nature Communications, 2017, 8, 1811.	12.8	360
4	Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano, 2013, 7, 6244-6257.	14.6	309
5	Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano, 2016, 10, 2702-2715.	14.6	215
6	Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 2018, 12, 11041-11061.	14.6	200
7	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	3.5	183
8	Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. Journal of Clinical Investigation, 2017, 127, 2007-2018.	8.2	168
9	Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages <i>versus</i> Apoptosis in Hepatocytes. ACS Nano, 2018, 12, 3836-3852.	14.6	141
10	Photo-responsive, biocompatible polymeric micelles self-assembled from hyperbranched polyphosphate-based polymers. Polymer Chemistry, 2011, 2, 1389.	3.9	112
11	Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers, 2012, 90, 8-15.	10.2	105
12	Transcytosis - An effective targeting strategy that is complementary to "EPR effect―for pancreatic cancer nano drug delivery. Theranostics, 2019, 9, 8018-8025.	10.0	103
13	Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5657-5668.	8.0	94
14	Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS Nano, 2020, 14, 13343-13366.	14.6	91
15	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	14.6	87
16	Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale, 2013, 5, 3982.	5.6	83
17	Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer, 2010, 51, 1311-1319.	3.8	82
18	Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1387-1397.	4.0	81

#	Article	IF	CITATIONS
19	Biocompatible vesicles based on PEO-b-PMPC/ \hat{l} ±-cyclodextrin inclusion complexes for drug delivery. Soft Matter, 2011, 7, 662-669.	2.7	79
20	Mixed Charged Zwitterionic Self-Assembled Monolayers as a Facile Way to Stabilize Large Gold Nanoparticles. Langmuir, 2011, 27, 5242-5251.	3 . 5	78
21	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS Nano, 2019, 13, 4778-4794.	14.6	78
22	Mixedâ€Charge Nanoparticles for Long Circulation, Low Reticuloendothelial System Clearance, and High Tumor Accumulation. Advanced Healthcare Materials, 2014, 3, 1439-1447.	7.6	77
23	Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter, 2010, 6, 5589.	2.7	7 5
24	Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy. Polymer Chemistry, 2013, 4, 2004.	3.9	63
25	Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. Journal of Materials Chemistry B, 2015, 3, 3297-3305.	5.8	60
26	Combination Chemoâ€Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Antiâ€PDâ€1. Advanced Science, 2021, 8, 2002147.	11.2	59
27	Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. Journal of Materials Chemistry, 2012, 22, 1916-1927.	6.7	58
28	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	14.6	58
29	Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery. Chemical Communications, 2013, 49, 7123.	4.1	57
30	Biocompatible and biodegradable polymersomes for pH-triggered drug release. Soft Matter, 2011, 7, 6629.	2.7	55
31	Biocompatible Micelles Based on Combâ€like PEG Derivates: Formation, Characterization, and Photoâ€responsiveness. Macromolecular Rapid Communications, 2011, 32, 1077-1081.	3.9	55
32	pH-responsive and biodegradable polymeric micelles based on poly(β-amino) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 <u>22</u> 2 Td	(ester)-graft-
33	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18930-18937.	8.0	49
34	The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Proâ€Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. Small, 2019, 15, e1901642.	10.0	48
35	Surface Tailoring of Nanoparticles via Mixedâ€Charge Monolayers and Their Biomedical Applications. Small, 2014, 10, 4230-4242.	10.0	47
36	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	11.9	46

#	Article	IF	Citations
37	Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nature Communications, 2020, 11, 4249.	12.8	44
38	Targeted drug delivery using iRGD peptide for solid cancer treatment. Molecular Systems Design and Engineering, 2017, 2, 370-379.	3.4	42
39	Safety Considerations of Cancer Nanomedicine—A Key Step toward Translation. Small, 2020, 16, e2000673.	10.0	41
40	Mechanistic Differences in Cell Death Responses to Metalâ€Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. Small, 2020, 16, e2000528.	10.0	41
41	Construction of photo-responsive micelles from azobenzene-modified hyperbranched polyphosphates and study of their reversible self-assembly and disassembly behaviours. New Journal of Chemistry, 2012, 36, 694-701.	2.8	40
42	Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials, 2019, 192, 416-428.	11.4	36
43	Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS Nano, 2021, 15, 1608-1626.	14.6	36
44	Construction of Redox-Active Multilayer Film for Electrochemically Controlled Release. Langmuir, 2013, 29, 11163-11168.	3.5	35
45	Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€Immunotherapy. Small, 2021, 17, e2005993.	10.0	35
46	pH and hydrogen peroxide dual responsive supramolecular prodrug system for controlled release of bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2014, 121, 189-195.	5.0	34
47	Consideration for the scaleâ€up manufacture of nanotherapeutics—A critical step for technology transfer. View, 2021, 2, 20200190.	5.3	34
48	The effect of ligand composition on the inÂvivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials, 2013, 34, 8370-8381.	11.4	33
49	Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS Nano, 2022, 16, 5184-5232.	14.6	32
50	Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269, 120635.	11.4	31
51	Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Current Topics in Medicinal Chemistry, 2019, 19, 2507-2523.	2.1	31
52	Injectable Biodegradable Polymeric Complex for Glucose-Responsive Insulin Delivery. ACS Nano, 2021, 15, 4294-4304.	14.6	29
53	Biomimetic Polymersomes as Carriers for Hydrophilic Quantum Dots. Langmuir, 2012, 28, 557-562.	3.5	28
54	Selfâ€ <scp>A</scp> ssembly of Nearâ€ <scp>M</scp> onodisperse Redoxâ€ <scp>S</scp> ensitive Micelles from Cholesterolâ€ <scp>C</scp> onjugated Biomimetic Copolymers. Macromolecular Bioscience, 2013, 13, 1084-1091.	4.1	27

#	Article	IF	CITATIONS
55	Functional 2-methylene-1,3-dioxepane terpolymer: a versatile platform to construct biodegradable polymeric prodrugs for intracellular drug delivery. Polymer Chemistry, 2014, 5, 4061-4068.	3.9	27
56	Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. Small, 2021, 17, e2102545.	10.0	27
57	Disulfideâ€Crosslinked Biomimetic Micelles: Formation, Thiol Reactivity and Cytotoxicity Behavior. Macromolecular Chemistry and Physics, 2010, 211, 2292-2300.	2.2	25
58	Small and Stable Phosphorylcholine Zwitterionic Quantum Dots for Weak Nonspecific Phagocytosis and Effective Tat Peptide Functionalization. Advanced Healthcare Materials, 2013, 2, 352-360.	7.6	25
59	Chiral Packing of Cholesteryl Group as an Effective Strategy To Get Low Molecular Weight Supramolecular Hydrogels in the Absence of Intermolecular Hydrogen Bond. Macromolecules, 2013, 46, 4235-4246.	4.8	24
60	Biocompatible and biodegradable supramolecular assemblies formed with cucurbit[8]uril as a smart platform for reduction-triggered release of doxorubicin. Polymer Chemistry, 2014, 5, 1843.	3.9	23
61	A Hepatocyteâ€Mimicking Antidote for Alcohol Intoxication. Advanced Materials, 2018, 30, e1707443.	21.0	22
62	Zwitterionic phosphorylcholine-protected water-soluble Ag nanoparticles. Science in China Series B: Chemistry, 2009, 52, 64-68.	0.8	19
63	Oneâ€Step Preparation of Reductionâ€Responsive Biodegradable Polymers as Efficient Intracellular Drug Delivery Platforms. Macromolecular Chemistry and Physics, 2014, 215, 1848-1854.	2.2	19
64	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	14.6	19
65	Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat. Journal of Materials Chemistry, 2012, 22, 13969.	6.7	17
66	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	14.9	17
67	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Nonâ€Toxic 2D Boron Nitride Effects. Small, 2021, 17, e2101084.	10.0	15
68	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials, 2021, 278, 121176.	11.4	14
69	Development of a spatiotemporal method to control molecular function by using silica-based photodegradable nanoparticles. Journal of Materials Chemistry B, 2014, 2, 4153-4158.	5.8	11
70	Spraying layer-by-layer assembly film based on the coordination bond of bioinspired polydopamine–Felll. Thin Solid Films, 2016, 600, 76-82.	1.8	10
71	Polyrotaxane Nanocarriers Can Deliver CRISPR/Cas9 Plasmid to Dystrophic Muscle Cells to Successfully Edit the DMD Gene. Advanced Therapeutics, 2019, 2, 1900061.	3.2	10
72	Major effect of transcytosis on nano drug delivery to pancreatic cancer. Molecular and Cellular Oncology, 2017, 4, e1335273.	0.7	8

#	Article	IF	CITATIONS
73	Ratiometric co-delivery of hydroxychloroquine and calculated low-dose paclitaxel efficiently suppresses tumor growth in hepatocellular carcinoma mouse models in vivo. Nano Today, 2022, 44, 101446.	11.9	5
74	Silicasome Nanocarriers: Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€lmmunotherapy (Small 14/2021). Small, 2021, 17, 2170065.	10.0	4
75	Engineering of CoSe ₂ Nanosheets via Vacancy Manipulation for Efficient Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 7800-7809.	4.6	4
76	Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Frontiers of Chemical Science and Engineering, 0 , 1 .	4.4	0