List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A semiconductor source of triggered entangled photon pairs. Nature, 2006, 439, 179-182.	13.7	798
2	Quantum memories. European Physical Journal D, 2010, 58, 1-22.	0.6	420
3	Improved fidelity of triggered entangled photons from single quantum dots. New Journal of Physics, 2006, 8, 29-29.	1.2	244
4	The Human Fetus Preferentially Engages with Face-like Visual Stimuli. Current Biology, 2017, 27, 1825-1828.e3.	1.8	216
5	A PUF taxonomy. Applied Physics Reviews, 2019, 6, .	5.5	206
6	Inversion of exciton level splitting in quantum dots. Physical Review B, 2005, 72, .	1.1	167
7	Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Physical Review B, 2006, 73, .	1.1	167
8	Single Semiconductor Quantum Dots. Nanoscience and Technology, 2009, , .	1.5	140
9	Coherence of an Entangled Exciton-Photon State. Physical Review Letters, 2007, 99, 266802.	2.9	136
10	Edible unclonable functions. Nature Communications, 2020, 11, 328.	5.8	116
11	Evolution of Entanglement Between Distinguishable Light States. Physical Review Letters, 2008, 101, 170501.	2.9	108
12	Modulation of single quantum dot energy levels by a surface-acoustic-wave. Applied Physics Letters, 2008, 93, .	1.5	94
13	A site-controlled quantum dot system offering both high uniformity and spectral purity. Applied Physics Letters, 2009, 94, 223121.	1.5	78
14	Quantum key distribution on a 10Gb/s WDM-PON. Optics Express, 2010, 18, 9600.	1.7	78
15	Quantum information to the home. New Journal of Physics, 2011, 13, 063039.	1.2	71
16	Bell-Inequality Violation with a Triggered Photon-Pair Source. Physical Review Letters, 2009, 102, 030406.	2.9	64
17	Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Applied Physics Letters, 2007, 90, 011907.	1.5	62
18	Photonic Crystals for Enhanced Light Extraction from 2D Materials. ACS Photonics, 2016, 3, 2515-2520.	3.2	48

#	Article	IF	CITATIONS
19	The structural, electronic and optical properties of GaSb/GaAs nanostructures for charge-based memory. Journal Physics D: Applied Physics, 2013, 46, 264001.	1.3	44
20	Optical observation of single-carrier charging in type-II quantum ring ensembles. Applied Physics Letters, 2012, 100, .	1.5	41
21	Single electron-spin memory with a semiconductor quantum dot. New Journal of Physics, 2007, 9, 365-365.	1.2	40
22	GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Applied Physics Letters, 2012, 100, .	1.5	40
23	AlGaAs/GaAs/AlGaAs quantum wells as a sensitive tool for the MOVPE reactor environment. Journal of Crystal Growth, 2010, 312, 3057-3062.	0.7	38
24	Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots. Physical Review B, 2012, 86, .	1.1	35
25	Heterodimensional charge-carrier confinement in stacked submonolayer InAs in GaAs. Physical Review B, 2016, 93, .	1.1	35
26	Tuning the properties of exciton complexes in self-assembled GaSb/GaAs quantum rings. Physical Review B, 2011, 83, .	1.1	34
27	Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries. Langmuir, 2020, 36, 4370-4382.	1.6	30
28	Monitoring epiready semiconductor wafers. Thin Solid Films, 2002, 412, 76-83.	0.8	27
29	Using Quantum Confinement to Uniquely Identify Devices. Scientific Reports, 2015, 5, 16456.	1.6	27
30	Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures. Journal of Applied Physics, 2013, 114, 073519.	1.1	24
31	Optical identification using imperfections in 2D materials. 2D Materials, 2017, 4, 045021.	2.0	24
32	Extracting random numbers from quantum tunnelling through a single diode. Scientific Reports, 2017, 7, 17879.	1.6	22
33	Visible Spectrum Quantum Light Sources Based on In _{<i>x</i>} Ga _{1–<i>x</i>} N/GaN Quantum Dots. ACS Photonics, 2015, 2, 958-963.	3.2	20
34	Biphoton interference with a quantum dot entangled light source. Optics Express, 2007, 15, 6507.	1.7	19
35	Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 2015, 106, .	1.5	18
36	High-Accuracy Analysis of Nanoscale Semiconductor Layers Using Beam-Exit Ar-Ion Polishing and Scanning Probe Microscopy. ACS Applied Materials & Interfaces, 2013, 5, 3241-3245.	4.0	17

#	Article	IF	CITATIONS
37	Growth and structural characterization of pyramidal siteâ€controlled quantum dots with high uniformity and spectral purity. Physica Status Solidi (B): Basic Research, 2010, 247, 1862-1866.	0.7	16
38	Long-Wavelength Photoluminescence from Stacked Layers of High-Quality Type-II GaSb/GaAs Quantum Rings. Crystal Growth and Design, 2013, 13, 1226-1230.	1.4	15
39	Entangled Photon Generation by Quantum Dots. Nanoscience and Technology, 2009, , 227-265.	1.5	15
40	Source of triggered entangled photon pairs? (Reply). Nature, 2007, 445, E5-E6.	13.7	13
41	Low-angle misorientation dependence of the optical properties of InGaAs/InAlAs quantum wells. Journal of Crystal Growth, 2010, 312, 1546-1550.	0.7	13
42	Microtopography of the eye surface of the crab <i>Carcinus maenas</i> : an atomic force microscope study suggesting a possible antifouling potential. Journal of the Royal Society Interface, 2013, 10, 20130122.	1.5	13
43	Large-Area Heterostructures from Graphene and Encapsulated Colloidal Quantum Dots via the Langmuir–Blodgett Method. ACS Applied Materials & Interfaces, 2018, 10, 6805-6809.	4.0	12
44	Entangled photons from the biexciton cascade of quantum dots. Journal of Applied Physics, 2007, 101, 081711.	1.1	11
45	Physics of novel site controlled InGaAs quantum dots on (111) oriented substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2761-2764.	1.3	11
46	Room-Temperature Mid-Infrared Emission from Faceted InAsSb Multi Quantum Wells Embedded in InAs Nanowires. Nano Letters, 2018, 18, 235-240.	4.5	11
47	Time-resolved studies of single quantum dots in magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 381-384.	1.3	10
48	Strong directional dependence of single-quantum-dot fine structure. Applied Physics Letters, 2005, 87, 133120.	1.5	10
49	Silicon-Based Single Quantum Dot Emission in the Telecoms C-Band. ACS Photonics, 2017, 4, 1740-1746.	3.2	10
50	Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 2017, 4, 015032.	2.0	10
51	Fetal eye movements in response to a visual stimulus. Brain and Behavior, 2020, 10, e01676.	1.0	10
52	Controlling the polarization correlation of photon pairs from a charge-tunable quantum dot. Applied Physics Letters, 2007, 91, 011114.	1.5	9
53	Quantum-Dot Sources for Single Photons and Entangled Photon Pairs. Proceedings of the IEEE, 2007, 95, 1805-1814.	16.4	9
54	Photoluminescence studies of individual and few GaSb/GaAs quantum rings. AIP Advances, 2014, 4, .	0.6	9

#	Article	IF	CITATIONS
55	Compact Electroabsorption Modulators for Photonic Integrated Circuits, Using an Isolated Pedestal Contact Scheme. IEEE Photonics Technology Letters, 2012, 24, 356-358.	1.3	8
56	Dispersal of pristine graphene for biological studies. RSC Advances, 2016, 6, 69551-69559.	1.7	8
57	Relevance of the purity level in a MetalOrganic Vapour Phase Epitaxy reactor environment for the growth of high quality pyramidal site-controlled Quantum Dots. Journal of Crystal Growth, 2011, 315, 119-122.	0.7	7
58	Combined metallic nano-rings and solid-immersion lenses for bright emission from single InAs/GaAs quantum dots. Applied Physics Letters, 2018, 112, 221102.	1.5	7
59	Enhancing and quantifying spatial homogeneity in monolayer WS2. Scientific Reports, 2021, 11, 14831.	1.6	7
60	Hole migration and optically induced charge depletion in GaSb/GaAs wetting layers and quantum rings. Physical Review B, 2013, 88, .	1.1	5
61	Pyramidal quantum dots: High uniformity and narrow excitonic emission. Superlattices and Microstructures, 2010, 47, 78-82.	1.4	4
62	Sub 10 ps Carrier Response Times in Electroabsorption Modulators Using Quantum Well Offsetting. IEEE Journal of Quantum Electronics, 2012, 48, 1467-1475.	1.0	4
63	Rapid thermal annealing and photoluminescence of type-II GaSb single monolayer quantum dot stacks. Journal Physics D: Applied Physics, 2013, 46, 305104.	1.3	4
64	Multimodal microscopy using â€~half and half' contact mode and ultrasonic force microscopy. Nanotechnology, 2014, 25, 335708.	1.3	4
65	Resonant-Tunnelling Diodes as PUF Building Blocks. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 878-885.	3.2	4
66	Hotspot generation for unique identification with nanomaterials. Scientific Reports, 2021, 11, 1528.	1.6	4
67	Inversion of the exciton fine structure splitting in quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 97-100.	1.3	3
68	Response to Scheel et al Current Biology, 2018, 28, R596-R597.	1.8	3
69	Photodetecting Heterostructures from Graphene and Encapsulated Colloidal Quantum Dot Films. ACS Omega, 2019, 4, 15824-15828.	1.6	3
70	Entangled photons on-demand from a single quantum dot. , 2006, , .		2
71	Improving the longevity of optically-read quantum dot physical unclonable functions. Scientific Reports, 2021, 11, 10999.	1.6	2
72	Cancellation of fine-structure splitting in quantum dots by a magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 135-138.	1.3	1

#	Article	IF	CITATIONS
73	Positive Lidocaine Toxicology Screen After J-Tip for Venipuncture. Pediatric Emergency Care, 2013, 29, 1278-1279.	0.5	1
74	Signing information in the quantum era. AVS Quantum Science, 2020, 2, 044101.	1.8	1
75	Entangled photon pairs from a quantum dot source. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3697-3701.	0.8	Ο
76	Quantum light generation with a semiconductor quantum dot. , 2007, , .		0
77	Biphoton interference with a quantum dot source of entangled light. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1888-1890.	1.3	Ο
78	Time-evolving entanglement and violation of Bell inequalities using a quantum dot photon-pair emitter , 2009, , .		0
79	Inside Back Cover (Phys. Status Solidi B 8/2010). Physica Status Solidi (B): Basic Research, 2010, 247, .	0.7	Ο
80	Quantum Key Distribution on a 10Gb/s WDM-PON. , 2010, , .		0
81	Single-photon and entangled-photon sources for quantum information. , 2010, , .		Ο
82	Atomic-scale Authentication with Resonant Tunneling Diodes. MRS Advances, 2016, 1, 1625-1629.	0.5	0
83	Analysing radiative and non-radiative recombination in InAs QDs on Si for integrated laser applications. Proceedings of SPIE, 2016, , .	0.8	Ο
84	Increasing Light Absorption and Collection Using Engineered Structures. , 0, , .		0
85	Entangled Photon Pair Sources Fabricated from InAs Quantum Dots. , 2009, , .		Ο
86	Sub 10 ps carrier response times in electroabsorption modulators using quantum well offsetting. , 2011, , .		0
87	Using quantum effects in nanomaterials for unique identification. SPIE Newsroom, 0, , .	0.1	Ο
88	N-state random switching based on quantum tunnelling. , 2017, , .		0
89	Quantum Dots in Planar Cavities — Single and Entangled Photon Sources. , 2008, , 59-69.		0
90	Antimonide Quantum Dot Nanostructures for Novel Photonic Device Applications. , 0, , .		0

#	Article	IF	CITATIONS
91	Entangled Photon Pair Emission and Interference from Single Quantum Dots. , 0, , 369-386.		0