Nini Pryds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133201/publications.pdf

Version: 2024-02-01

237 papers 9,466 citations

41344 49 h-index 86 g-index

241 all docs

241 docs citations

times ranked

241

8510 citing authors

#	Article	IF	CITATIONS
1	Disclosing the response of the surface electronic structure in SrTiO3 (001) to strain. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	2.1	6
2	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	5. 9	217
3	2022 roadmap on 3D printing for energy. JPhys Energy, 2022, 4, 011501.	5.3	17
4	On the thermoelectric properties of Nb-doped SrTiO ₃ epitaxial thin films. Physical Chemistry Chemical Physics, 2022, 24, 3741-3748.	2.8	9
5	Induced giant piezoelectricity in centrosymmetric oxides. Science, 2022, 375, 653-657.	12.6	59
6	Improved High-Temperature Thermoelectric Properties of Dual-Doped Ca ₃ Co ₄ O ₉ . ACS Omega, 2022, 7, 6579-6590.	3.5	18
7	Robust Electronic Structure of Manganite-Buffered Oxide Interfaces with Extreme Mobility Enhancement. ACS Nano, 2022, 16, 6437-6443.	14.6	3
8	Cool redox reactions. Nature Energy, 2022, 7, 304-305.	39.5	1
9	High-performance electrostrictor oxide thin films. , 2022, , 449-467.		0
10	A Two-Dimensional Superconducting Electron Gas in Freestanding LaAlO ₃ /SrTiO ₃ Micromembranes. Nano Letters, 2022, 22, 4758-4764.	9.1	9
11	Freestanding Perovskite Oxide Films: Synthesis, Challenges, and Properties. Annalen Der Physik, 2022, 534, .	2.4	36
12	Symmetry breaking in magnetoresistive devices. Physical Review B, 2022, 106, .	3.2	2
13	Current Mapping of Amorphous LaAlO ₃ /SrTiO ₃ near the Metal–Insulator Transition. ACS Applied Electronic Materials, 2022, 4, 3421-3427.	4.3	1
14	Band-Order Anomaly at the \hat{I}^3 -Al ₂ O ₃ /SrTiO ₃ Interface Drives the Electron-Mobility Boost. ACS Nano, 2021, 15, 4347-4356.	14.6	18
15	Time-Reversal Symmetry Breaking Driven Topological Phase Transition in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mm!:mrow><mm 11<="" 2021,="" physical="" review="" td="" x.=""><td>าl:mn>6<!--</td--><td></td></td></mm></mm!:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	าl:mn>6 </td <td></td>	
16	Time-Enhanced Performance of Oxide Thermoelectric Modules Based on a Hybrid p–n Junction. ACS Omega, 2021, 6, 197-205.	3.5	6
17	Ba _{2–<i>x</i>} Bi _{<i>x</i>} CoRuO ₆ (0.0 ≠ <i>x</i> ≠0.6) Hexagonal Double-Perovskite-Type Oxides as Promising p-Type Thermoelectric Materials. Inorganic Chemistry, 2021, 60, 17824-17836.	4.0	4
18	Oxide thermoelectrics: From materials to module. , 2020, , 131-156.		6

#	Article	IF	CITATIONS
19	Phase separation in amorphous tantalum oxide from first principles. APL Materials, 2020, 8, .	5.1	12
20	The emergence of magnetic ordering at complex oxide interfaces tuned by defects. Nature Communications, 2020, 11, 3650.	12.8	35
21	Charge-transfer engineering strategies for tailored ionic conductivity at oxide interfaces. Journal of Materials Chemistry C, 2020, 8, 11354-11359.	5. 5	8
22	Atomic-scale insights into electro-steric substitutional chemistry of cerium oxide. Physical Chemistry Chemical Physics, 2020, 22, 21900-21908.	2.8	6
23	Solar-driven plasmonic heterostructure Ti/TiO _{2â^x} with gradient doping for sustainable plasmon-enhanced catalysis. Physical Chemistry Chemical Physics, 2020, 22, 7769-7777.	2.8	5
24	Oxygen vacancies: The (in)visible friend of oxide electronics. Applied Physics Letters, 2020, 116, .	3.3	218
25	Electro-chemo-mechanical effect in Gd-doped ceria thin films with a controlled orientation. Journal of Materials Chemistry A, 2020, 8, 14023-14030.	10.3	17
26	Tuning the resistive switching in tantalum oxide-based memristors by annealing. AIP Advances, 2020, 10 ,	1.3	4
27	Prediction of crystalline Ta4O9 phase using first principles-based cluster expansion calculations. APL Materials, 2020, 8, .	5.1	2
28	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -factors in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaAlO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>	nl:min'> <td>ml:msub><mi< td=""></mi<></td>	ml:msub> <mi< td=""></mi<>
29	Electrolyte gate controlled metal-insulator transitions of the CaZrO3/SrTiO3 heterointerface. Applied Physics Letters, 2019, 115, 061601.	3.3	14
30	Functional Oxide Thin Films for Advanced Energy and Information Technology. Advanced Materials Interfaces, 2019, 6, 1900990.	3.7	13
31	Enhanced electro-mechanical coupling of TiN/Ce0.8Gd0.2O1.9 thin film electrostrictor. APL Materials, 2019, 7, .	5.1	14
32	Gate-tunable Rashba spin-orbit coupling and spin polarization at diluted oxide interfaces. Physical Review B, 2019, 100, .	3.2	17
33	Stimulating Oxide Heterostructures: A Review on Controlling SrTiO ₃ â€Based Heterointerfaces with External Stimuli. Advanced Materials Interfaces, 2019, 6, 1900772.	3.7	56
34	Surface Pyroelectricity in Cubic SrTiO ₃ . Advanced Materials, 2019, 31, e1904733.	21.0	54
35	The role of oxide interfaces in highly confined electronic and ionic conductors. APL Materials, 2019, 7, 013101.	5.1	13
36	Electrochemical stability of (La,Sr)CoO _{3â^²Î′} in (La,Sr)CoO _{3â^²Î′} /(Ce,) Tj ETQq0 0 0 rgB7	Qverlock	

#	Article	IF	CITATIONS
37	Thermoelectric Properties of Dual Doped Bi2Sr2Co2Oy-Based Ceramics. Journal of Electronic Materials, 2019, 48, 4618-4626.	2.2	14
38	Towards Oxide Electronics: a Roadmap. Applied Surface Science, 2019, 482, 1-93.	6.1	236
39	Magnetic and electronic properties at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>l³</mml:mi> <mml:mtext>â°O <mml:mn>3 </mml:mn> <mml:mo> / </mml:mo> < <mml:msub> <mp>Physical Review B. 2019. 99</mp></mml:msub></mml:mtext></mml:mrow></mml:math>	l:mtext>< ıml:mi>Sr1	mml:msub> < iO
40	Oxide Interfaces: Diluted Oxide Interfaces with Tunable Ground States (Adv. Mater. 10/2019). Advanced Materials, 2019, 31, 1970072.	21.0	3
41	On the emergence of conductivity at SrTiO3-based oxide interfaces – an in-situ study. Scientific Reports, 2019, 9, 18005.	3.3	10
42	Electrical, magnetic and magnetotransport properties of Na and Mo doped Ca ₃ Co ₄ O ₉ materials. RSC Advances, 2019, 9, 31274-31283.	3.6	6
43	Strain-tunable magnetism at oxide domain walls. Nature Physics, 2019, 15, 269-274.	16.7	65
44	Tuning the stoichiometry and electrical properties of tantalum oxide thin films. Applied Surface Science, 2019, 470, 1071-1074.	6.1	19
45	Diluted Oxide Interfaces with Tunable Ground States. Advanced Materials, 2019, 31, e1805970.	21.0	28
46	High-temperature thermoelectric properties of Na- and W-Doped Ca ₃ Co ₄ O ₉ system. RSC Advances, 2018, 8, 12211-12221.	3.6	22
47	2D hole gas seen. Nature Materials, 2018, 17, 215-216.	27.5	15
48	Electron Mobility in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\hat{l}^3</mml:mi><mml:mtext>\hat{a}^2</mml:mtext><mml:mtext><mml:msub><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><th>ml;mi>Al< b>3:mml:m</th><th>/mml:mi>no>/</th></mml:mrow></mml:msub></mml:mtext></mml:mrow></mml:math>	ml;mi>Al< b>3:mml:m	/mml:mi>no>/
49	Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO ₃ Epitaxial Thin Film System. Advanced Electronic Materials, 2018, 4, 1800055.	5.1	27
50	Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 7887-7896.	10.3	18
51	Tuning the Two-Dimensional Electron Gas at Oxide Interfaces with Ti–O Configurations: Evidence from X-ray Photoelectron Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1434-1439.	8.0	15
52	Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions. Journal Physics D: Applied Physics, 2018, 51, 014005.	2.8	20
53	Near interface ionic transport in oxygen vacancy stabilized cubic zirconium oxide thin films. Physical Chemistry Chemical Physics, 2018, 20, 26068-26071.	2.8	6
54	Nanoscale patterning of electronic devices at the amorphous LaAlO3/SrTiO3 oxide interface using an electron sensitive polymer mask. Applied Physics Letters, 2018, 112, .	3.3	6

#	Article	IF	Citations
55	Extreme Reconfigurable Nanoelectronics at the CaZrO 3 /SrTiO 3 Interface. Advanced Materials, 2018, 30, 1801794.	21.0	16
56	Electron mobility in oxide heterostructures. Journal Physics D: Applied Physics, 2018, 51, 293002.	2.8	44
57	Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Applied Catalysis B: Environmental, 2018, 237, 416-423.	20.2	24
58	Emergent Ferromagnetism: Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO ₃ Epitaxial Thin Film System (Adv. Electron. Mater. 6/2018). Advanced Electronic Materials, 2018, 4, 1870030.	5.1	1
59	Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces. Journal of Applied Physics, 2017, 121, 095305.	2.5	7
60	Experimental Determination of the Formation Enthalpy of Calcium Cobaltate from Sol–Gel Precursors. Journal of Electronic Materials, 2017, 46, 1413-1417.	2.2	1
61	Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Solar Energy Materials and Solar Cells, 2017, 166, 91-99.	6.2	83
62	Thermodynamic Ground States of Complex Oxide Heterointerfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1086-1092.	8.0	34
63	Giant Tunability of the Two-Dimensional Electron Gas at the Interface of γ-Al ₂ O ₃ /SrTiO ₃ . Nano Letters, 2017, 17, 6878-6885.	9.1	44
64	Tuning the Two-Dimensional Electron Liquid at Oxide Interfaces by Buffer-Layer-Engineered Redox Reactions. Nano Letters, 2017, 17, 7062-7066.	9.1	22
65	A regenerative elastocaloric device: experimental results. Journal Physics D: Applied Physics, 2017, 50, 424006.	2.8	90
66	Transport and excitations in a negative-U quantum dot at the LaAlO3/SrTiO3 interface. Nature Communications, 2017, 8, 395.	12.8	31
67	Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3. Applied Physics Letters, 2017, 111, .	3.3	12
68	Magnetic two-dimensional electron gas at the manganite-buffered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaAl</mml:mi><mml:msub><mml:mo>/</mml:mo><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>	mi nı 3.l2 mi>∢ı	m ısıs :msub><
69	interface. Physical Review B, 2017, 96, . Microscopic origin of the mobility enhancement at a spinel/perovskite oxide heterointerface revealed by photoemission spectroscopy. Physical Review B, 2017, 96, .	3.2	32
70	Controlling the Carrier Density of SrTiO ₃ â€Based Heterostructures with Annealing. Advanced Electronic Materials, 2017, 3, 1700026.	5.1	28
71	When two become one: An insight into 2D conductive oxide interfaces. Journal of Electroceramics, 2017, 38, 1-23.	2.0	46
72	Suppressed carrier density for the patterned high mobility two-dimensional electron gas at \hat{I}^3 -Al2O3/SrTiO3 heterointerfaces. Applied Physics Letters, 2017, 111, 021602.	3.3	18

#	Article	IF	CITATIONS
73	Releasing cation diffusion in self-limited nanocrystalline defective ceria thin films. RSC Advances, 2017, 7, 13784-13788.	3.6	9
74	In Operando Study of Highâ€Performance Thermoelectric Materials for Power Generation: A Case Study of βâ€Zn ₄ sb ₃ . Advanced Electronic Materials, 2017, 3, 1700223.	5.1	17
75	Mid-IR optical properties of silicon doped InP. Optical Materials Express, 2017, 7, 2260.	3.0	14
76	Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing. Physical Review Materials, 2017, 1 , .	2.4	8
77	Infrared ellipsometry study of the confined electrons in a high-mobility <i>\int_3 </i> -Al ₂ O ₃ /SrTiO ₃ heterostructure. Europhysics Letters, 2016, 113, 47005.	2.0	15
78	Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material. Journal of Materials Chemistry A, 2016, 4, 12221-12231.	10.3	32
79	Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling. Shape Memory and Superelasticity, 2016, 2, 317-329.	2.2	70
80	Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling. APL Materials, $2016,4,.$	5.1	25
81	Electric field control of the \hat{I}^3 -Al2O3/SrTiO3 interface conductivity at room temperature. Applied Physics Letters, 2016, 109, .	3.3	20
82	High ionic conductivity in confined bismuth oxide-based heterostructures. APL Materials, 2016, 4, .	5.1	25
83	Silicon doped InP as an alternative plasmonic material for mid-infrared., 2016,,.		O
84	Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355Ânm. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	12
85	Elastocaloric effect of a Ni-Ti plate to be applied in a regenerator-based cooling device. Science and Technology for the Built Environment, 2016, 22, 489-499.	1.7	33
86	The 2016 oxide electronic materials and oxide interfaces roadmap. Journal Physics D: Applied Physics, 2016, 49, 433001.	2.8	266
87	Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > mml:mrow > mml:msub > mml:mrow > mml:mi > SrTiO < mml:mi > < mml:mrow > mml:mrow > < mml	nml:mn>3	<mark 87 </td
88	Evidence of weak superconductivity at the room-temperature grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>LaAlO</mml:mi><mi>Physical Review B, 2016, 93, .</mi></mml:msub></mml:mrow></mml:math>	ท l:๓๏ >3<	/m#nd:mn>
89	Evidence for lattice-polarization-enhanced field effects at the SrTiO3-based heterointerface. Scientific Reports, 2016, 6, 22418.	3.3	7
90	A regenerative elastocaloric heat pump. Nature Energy, 2016, 1 , .	39.5	271

#	Article	IF	CITATIONS
91	Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC Advances, 2016, 6, 59565-59573.	3.6	33
92	A thermoelectric power generating heat exchanger: Part I – Experimental realization. Energy Conversion and Management, 2016, 119, 473-480.	9.2	22
93	A thermoelectric power generating heat exchanger: Part II $\hat{a} \in$ Numerical modeling and optimization. Energy Conversion and Management, 2016, 119, 481-487.	9.2	19
94	On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloys. Journal of Electronic Materials, 2016, 45, 594-601.	2.2	25
95	10.1063/1.4955131.1., 2016, , .		0
96	Band bending and alignment at the spinel/perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>\hat{l}^3</mml:mi><mml:mtext>\hat{a}^2<td>:n3t2xt><r< td=""><td>mss:msub><</td></r<></td></mml:mtext></mml:mrow></mml:math>	:n 3t2 xt> <r< td=""><td>mss:msub><</td></r<>	m ss :msub><
97	Functionally Graded Ceramics Fabricated with Sideâ€byâ€Side Tape Casting for Use in Magnetic Refrigeration. International Journal of Applied Ceramic Technology, 2015, 12, 891-898.	2.1	12
98	Modeling the Microstructural Evolution During Constrained Sintering. Journal of the American Ceramic Society, 2015, 98, 3490-3495.	3.8	11
99	The Elastocaloric Effect: A Way to Cool Efficiently. Advanced Energy Materials, 2015, 5, 1500361.	19.5	234
100	Patterning of high mobility electron gases at complex oxide interfaces. Applied Physics Letters, 2015, 107, .	3.3	18
101	Segmented Thermoelectric Oxideâ€Based Module for Highâ€Temperature Waste Heat Harvesting. Energy Technology, 2015, 3, 1143-1151.	3.8	29
102	Extreme mobility enhancement ofÂtwo-dimensional electron gases at oxide interfaces byÂcharge-transfer-induced modulationÂdoping. Nature Materials, 2015, 14, 801-806.	27.5	174
103	Effects of Yttrium and Iron co-doping on the high temperature thermoelectric properties of Ca3Co4O9+δ. Journal of Alloys and Compounds, 2015, 638, 127-132.	5. 5	20
104	ZnS top layer for enhancement of the crystallinity of CZTS absorber during the annealing. , 2015, , .		2
105	Segmentation of lowâ€cost high efficiency oxideâ€based thermoelectric materials. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 767-774.	1.8	25
106	Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets. Applied Surface Science, 2015, 336, 385-390.	6.1	41
107	Design and experimental tests of a rotary active magnetic regenerator prototype. International Journal of Refrigeration, 2015, 58, 14-21.	3.4	99
108	Solid-oxide fuel cells. , 2015, , 443-478.		3

#	Article	IF	Citations
109	High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energy Conversion and Management, 2015, 99, 20-27.	9.2	23
110	Elastocaloric effect of Ni-Ti wire for application in a cooling device. Journal of Applied Physics, 2015, 117, .	2.5	196
111	Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface. Nano Letters, 2015, 15, 1849-1854.	9.1	89
112	Enhancement of the chemical stability in confinedÂÎ-Bi2O3. Nature Materials, 2015, 14, 500-504.	27.5	148
113	Optimization of the Mechanical and Electrical Performance of a Thermoelectric Module. Journal of Electronic Materials, 2015, 44, 4465-4472.	2.2	13
114	High-temperature stability of thermoelectric Ca3Co4O9 thin films. Applied Physics Letters, 2015, 106, 143903.	3.3	10
115	Percolative nature of A-site disordered La0.75Ca0.25â^'xSrxMnO3 manganites. Materials Chemistry and Physics, 2015, 168, 74-78.	4.0	3
116	Modeling constrained sintering of bi-layered tubular structures. Journal of the European Ceramic Society, 2015, 35, 941-950.	5.7	10
117	Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces. Journal of Materials Research, 2014, 29, 2891-2897.	2.6	2
118	Finite Element Modeling of Camber Evolution During Sintering of Bilayer Structures. Journal of the American Ceramic Society, 2014, 97, 2965-2972.	3.8	13
119	Towards high efficiency segmented thermoelectric unicouples. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 9-17.	1.8	80
120	Room Temperature Formation of Highâ€Mobility Twoâ€Dimensional Electron Gases at Crystalline Complex Oxide Interfaces. Advanced Materials, 2014, 26, 1462-1467.	21.0	65
121	Densification of Highly Defective Ceria by High Temperature Controlled Re-Oxidation. Journal of the Electrochemical Society, 2014, 161, F3072-F3078.	2.9	27
122	Development and experimental results from a 1ÂkW prototype AMR. International Journal of Refrigeration, 2014, 37, 78-83.	3.4	59
123	In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy. Journal of the European Ceramic Society, 2014, 34, 3019-3025.	5.7	3
124	Nanosecond laser ablation and deposition of silver, copper, zinc and tin. Applied Physics A: Materials Science and Processing, 2014, 117, 89-92.	2.3	7
125	High temperature thermoelectric properties of Ca3Co4O9+ \hat{l} by auto-combustion synthesis and spark plasma sintering. Journal of the European Ceramic Society, 2014, 34, 925-931.	5.7	80
126	Strain in the mesoscale kinetic Monte Carlo model for sintering. Computational Materials Science, 2014, 82, 293-297.	3.0	25

#	Article	IF	CITATIONS
127	Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9. Journal of Alloys and Compounds, 2014, 582, 827-833.	5.5	22
128	Visible-light-enhanced gating effect at the LaAlO3/SrTiO3 interface. Nature Communications, 2014, 5, 5554.	12.8	79
129	Structural instability and electrical properties in epitaxial Er2O3-stabilized Bi2O3 thin films. Solid State Ionics, 2014, 266, 13-18.	2.7	21
130	Analysis of the internal heat losses in a thermoelectric generator. International Journal of Thermal Sciences, 2014, 85, 12-20.	4.9	59
131	The influence of non-magnetocaloric properties onÂthe performance in parallel-plate AMRs. International Journal of Refrigeration, 2014, 37, 127-134.	3.4	19
132	Multi-scale modeling of shape distortions during sintering of bi-layers. Computational Materials Science, 2014, 88, 28-36.	3.0	27
133	Experimental and numerical results of a high frequency rotating active magnetic refrigerator. International Journal of Refrigeration, 2014, 37, 92-98.	3.4	58
134	Effects of morphology on the thermoelectric properties of Al-doped ZnO. RSC Advances, 2014, 4, 12353.	3.6	68
135	Investigation of electronic phase segregation in La _{0.75} Ca _{0.15} Sr _{0.10} MnO ₃ manganite. Journal of Physics: Conference Series, 2014, 534, 012020.	0.4	0
136	Sintering of Multilayered Porous Structures: Part lâ€Constitutive Models. Journal of the American Ceramic Society, 2013, 96, 2657-2665.	3.8	26
137	Kinetics, Stability, and Thermal Contact Resistance of Nickel–Ca3Co4O9 Interfaces Formed by Spark Plasma Sintering. Journal of Electronic Materials, 2013, 42, 1661-1668.	2.2	6
138	Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+l´. Journal of Electronic Materials, 2013, 42, 2134-2142.	2,2	16
139	Modeling kinetics of distortion in porous bi-layered structures. Journal of the European Ceramic Society, 2013, 33, 1297-1305.	5.7	27
140	High-mobility two-dimensional electron gases at oxide interfaces: Origin and opportunities. Chinese Physics B, 2013, 22, 116803.	1.4	23
141	Performance analysis of a rotary active magnetic refrigerator. Applied Energy, 2013, 111, 669-680.	10.1	72
142	A high-mobility two-dimensional electron gas at the spinel/perovskite interface of \hat{I}^3 -Al2O3/SrTiO3. Nature Communications, 2013, 4, 1371.	12.8	285
143	High-temperature thermoelectric properties of Ca0.9Y0.1Mn1â^'x Fe x O3 (0Ââ%ÂxÂâ%Â0.25). Journal of Mater Science, 2013, 48, 2817-2822.	ials 3.7	12
144	The influence of \hat{l}_{\pm} - and \hat{l}^3 -Al2O3 phases on the thermoelectric properties of Al-doped ZnO. Journal of Alloys and Compounds, 2013, 555, 291-296.	5.5	45

#	Article	IF	Citations
145	Degradation of the interfacial conductivity in LaAlO3/SrTiO3 heterostructures during storage at controlled environments. Solid State Ionics, 2013, 230, 12-15.	2.7	15
146	Utilizing Materials With Controllable Curie Temperatures for Magnetic Actuation Purposes. IEEE Transactions on Magnetics, 2013, 49, 1159-1162.	2.1	1
147	Modeling Sintering of Multilayers Under Influence of Gravity. Journal of the American Ceramic Society, 2013, 96, 80-89.	3.8	26
148	The Effect of Particle Size Distributions on the Microstructural Evolution During Sintering. Journal of the American Ceramic Society, 2013, 96, 103-110.	3.8	71
149	The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO. Journal of Electronic Materials, 2013, 42, 1573-1581.	2.2	27
150	Sintering of Multilayered Porous Structures: Part <scp>II</scp> –Experiments and Model Applications. Journal of the American Ceramic Society, 2013, 96, 2666-2673.	3.8	27
151	Nanostructured oxide materials and modules for high-temperature power generation from waste heat. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 023002.	1.5	19
152	Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication. Applied Physics Letters, 2013, 103, 031607.	3.3	12
153	Camber Evolution and Stress Development of Porous Ceramic Bilayers During Coâ€Firing. Journal of the American Ceramic Society, 2013, 96, 972-978.	3.8	29
154	Controlling interfacial states in amorphous/crystalline LaAlO3/SrTiO3 heterostructures by electric fields. Applied Physics Letters, 2013, 102, .	3.3	29
155	Thermoelectric properties and microstructure of modified novel complex cobalt oxides Sr3RECo4O10.5 (RE = Y, Gd)., 2012,,.		1
156	Plasma plume effects on the conductivity of amorphous-LaAlO3/SrTiO3 interfaces grown by pulsed laser deposition in O2 and Ar. Applied Physics Letters, 2012, 100, .	3.3	52
157	Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O2â^Î thin films. Applied Physics Letters, 2012, 100, .	3.3	36
158	Experimental results for a novel rotary active magnetic regenerator. International Journal of Refrigeration, 2012, 35, 1498-1505.	3.4	127
159	On the origin of metallic conductivity at the interface of LaAlO3/SrTiO3. Applied Surface Science, 2012, 258, 9242-9245.	6.1	28
160	Materials Challenges for High Performance Magnetocaloric Refrigeration Devices. Advanced Energy Materials, 2012, 2, 1288-1318.	19.5	458
161	High performance magnetocaloric perovskites for magnetic refrigeration. Applied Physics Letters, 2012, 100, .	3.3	95
162	Microstructure and Thermoelectric Properties of Screen-Printed Thick Films of Misfit-Layered Cobalt Oxides with Ag Addition. Journal of Electronic Materials, 2012, 41, 1280-1285.	2.2	13

#	Article	IF	CITATIONS
163	Broadening of the magnetic entropy change in La0.75Ca0.15Sr0.10MnO3. Materials Chemistry and Physics, 2012, 132, 192-195.	4.0	6
164	The sintering behavior of close-packed spheres. Scripta Materialia, 2012, 67, 81-84.	5.2	28
165	Improving Magnet Designs With High and Low Field Regions. IEEE Transactions on Magnetics, 2011, 47, 1687-1692.	2.1	17
166	Metallic and Insulating Interfaces of Amorphous SrTiO ₃ -Based Oxide Heterostructures. Nano Letters, 2011, 11, 3774-3778.	9.1	304
167	A Monolithic Perovskite Structure for Use as a Magnetic Regenerator. Journal of the American Ceramic Society, 2011, 94, 2549-2555.	3.8	22
168	Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron addition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1322-1325.	3.5	20
169	Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ. Journal of Power Sources, 2011, 196, 10606-10610.	7.8	26
170	Determining the minimum mass and cost of a magnetic refrigerator. International Journal of Refrigeration, 2011, 34, 1805-1816.	3.4	29
171	Design concepts for a continuously rotating active magnetic regenerator. International Journal of Refrigeration, 2011, 34, 1792-1796.	3.4	30
172	An experimental study of passive regenerator geometries. International Journal of Refrigeration, 2011, 34, 1817-1822.	3.4	24
173	The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 104, 845-850.	2.3	2
174	Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 104, 883-887.	2.3	9
175	Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2011, 105, 697-701.	2.3	2
176	Review on numerical modeling of active magnetic regenerators for room temperature applications. International Journal of Refrigeration, 2011, 34, 603-616.	3.4	182
177	Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn. Journal of Electronic Materials, 2011, 40, 674-677.	2.2	31
178	High-Temperature Thermoelectric and Microstructural Characteristics of Cobalt-Based Oxides with Ga Substituted on the Co-Site. Journal of Electronic Materials, 2011, 40, 716-722.	2.2	25
179	Enhancement of the Thermoelectric Performance of pâ€Type Layered Oxide Ca ₃ Co ₄ O ₉₊ _{<i>î´</i>} Through Heavy Doping and Metallic Nanoinclusions. Advanced Materials, 2011, 23, 2484-2490.	21.0	249
180	Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques. Applied Surface Science, 2011, 257, 5341-5346.	6.1	11

#	Article	IF	CITATIONS
181	Analysis of single blow effectiveness in non-uniform parallel plate regenerators. International Journal of Heat and Mass Transfer, 2011, 54, 4746-4751.	4.8	7
182	Imposed quasi-layer-by-layer homoepitaxial growth of SrTiO3 films by large area pulsed laser deposition. Thin Solid Films, 2011, 519, 6330-6333.	1.8	9
183	Anomalously high thermoelectric power factor in epitaxial ScN thin films. Applied Physics Letters, 2011, 99, .	3.3	84
184	Magnetic refrigeration at room temperature – from magnetocaloric materials to a prototype. Journal of Physics: Conference Series, 2011, 303, 012082.	0.4	22
185	Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures. Applied Physics Letters, 2011, 98, 232105.	3.3	6
186	Quantitative TEM analysis of Al/Cu multilayer systems prepared by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 677-680.	2.3	5
187	Electrical characterization of gadolinia-doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 601-607.	2.3	16
188	Effects of dopant concentration and impurities on the conductivity of magnetron-sputtered nanocrystalline yttria-stabilized zirconia. Solid State Ionics, 2010, 181, 864-867.	2.7	9
189	Interfacial properties of immiscible Co–Cu alloys. Journal of Materials Science, 2010, 45, 1979-1985.	3.7	20
190	Lowâ€Temperature Superionic Conductivity in Strained Yttriaâ€Stabilized Zirconia. Advanced Functional Materials, 2010, 20, 2071-2076.	14.9	150
191	An optimized magnet for magnetic refrigeration. Journal of Magnetism and Magnetic Materials, 2010, 322, 3324-3328.	2.3	49
192	Comparison of adjustable permanent magnetic field sources. Journal of Magnetism and Magnetic Materials, 2010, 322, 3664-3671.	2.3	59
193	Modeling of parallel-plate regenerators with non-uniform plate distributions. International Journal of Heat and Mass Transfer, 2010, 53, 5065-5072.	4.8	16
194	Review and comparison of magnet designs for magnetic refrigeration. International Journal of Refrigeration, 2010, 33, 437-448.	3.4	138
195	A comprehensive parameter study of an active magnetic regenerator using a 2D numerical model. International Journal of Refrigeration, 2010, 33, 753-764.	3.4	46
196	Concentration-dependent ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline scandia-stabilized zirconia. Solid State Ionics, 2010, 181, 1140-1145.	2.7	12
197	Cathode–Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, 2010, 93, 2877-2883.	3.8	103
198	The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate. Materials, 2010, 3, 318-328.	2.9	56

#	Article	IF	Citations
199	Enhanced conductivity in pulsed laser deposited Ce0.9Gd0.1O2â^Î/SrTiO3 heterostructures. Applied Physics Letters, 2010, 97, 143110.	3.3	14
200	Resistance switching at the interface of LaAlO3/SrTiO3. Applied Physics Letters, 2010, 97, .	3.3	43
201	Thermoelectric properties of molybdenum oxides LnMo8O14 (Ln = La, Ce, Pr, Nd and Sm). Journal of Alloys and Compounds, 2010, 489, 353-356.	5 . 5	7
202	High thermoelectric performance of reduced lanthanide molybdenum oxides densified by spark plasma sintering. Journal of Alloys and Compounds, 2010, 500, 22-25.	5.5	12
203	The persistence of the magnetocaloric effect in (La1â^'xAx)0.67Ba0.33Mn1.05O3â^Î. Journal of Applied Physics, 2010, 108, .	2.5	8
204	Electrical characterization of gadolinia doped ceria films grown by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 601.	2.3	1
205	lonic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia. Journal of Applied Physics, 2009, 105, 104907.	2.5	36
206	Detailed numerical modeling of a linear parallel-plate Active Magnetic Regenerator. International Journal of Refrigeration, 2009, 32, 1478-1486.	3.4	79
207	Giant magnetoresistance in melt spun. Journal of Magnetism and Magnetic Materials, 2009, 321, 131-136.	2.3	15
208	On the growth of gadolinia-doped ceria by pulsed laser deposition. Applied Surface Science, 2009, 255, 5232-5235.	6.1	24
209	RHEED study of titanium dioxide with pulsed laser deposition. Applied Surface Science, 2009, 255, 5240-5244.	6.1	1
210	Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films. Applied Physics Letters, 2009, 95, .	3.3	21
211	Large anisotropy in colossal magnetoresistance of charge orbital ordered epitaxial Sm _{0.5} Ca _{0.5} MnO ₃ films. Journal of Physics Condensed Matter, 2009, 21, 442001.	1.8	6
212	Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator. International Journal of Refrigeration, 2008, 31, 432-443.	3.4	83
213	The liquid metastable miscibility gap in the Cu–Co–Fe system. Journal of Materials Science, 2008, 43, 3253-3258.	3.7	23
214	Growth of thin films of TiN on MgO(100) monitored byÂhigh-pressure RHEED. Applied Physics A: Materials Science and Processing, 2008, 93, 705-710.	2.3	13
215	Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field. Review of Scientific Instruments, 2008, 79, 083901.	1.3	56
216	Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator. Journal Physics D: Applied Physics, 2008, 41, 105002.	2.8	44

#	Article	IF	Citations
217	Design of optical reflectance signals for wear control by varying the thickness of thin films of Ti-compounds. Journal Physics D: Applied Physics, 2008, 41, 135307.	2.8	5
218	Optimization and improvement of Halbach cylinder design. Journal of Applied Physics, 2008, 104, .	2.5	64
219	A versatile magnetic refrigeration test device. Review of Scientific Instruments, 2008, 79, 093906. Atomic structure of glassy <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>72</td></mml:math>	1.3	72
220	display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Mg</mml:mi><mml:mn>60</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:mn>30</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>10</mml:mn></mml:msub></mml:mrow> investigated	3.2 	32
221	with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations. Physical Review B, 20 Large-area production of yttria-stabilized zirconia by pulsed laser deposition. Journal of Physics: Conference Series, 2007, 59, 140-143.	0.4	5
222	Preparation of La0.8Sr0.2Cr0.97V0.03O3â~δfilms for solid oxide fuel cell application. Thin Solid Films, 2007, 515, 6537-6540.	1.8	6
223	High fluence deposition of polyethylene glycol films at 1064nm by matrix assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 253, 7952-7956.	6.1	8
224	The spatial thickness distribution of metal films produced by large area pulsed laser deposition. Applied Surface Science, 2007, 253, 8231-8234.	6.1	23
225	Characterization of yttria-stabilized zirconia thin films grown by pulsed laser deposition (PLD) on various substrates. Applied Surface Science, 2007, 254, 1338-1342.	6.1	39
226	Thermodynamics and mechanism of demixing in undercooled Cu–Co–Ni alloys. Acta Materialia, 2007, 55, 6642-6650.	7.9	47
227	Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 254, 1244-1248.	6.1	12
228	Thickness dependence of the conductivity of thin films (La,Sr)FeO3 deposited on MgO single crystal. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 38-42.	3.5	21
229	Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE). Applied Surface Science, 2007, 253, 6451-6455.	6.1	37
230	Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application. Surface and Coatings Technology, 2007, 202, 1262-1266.	4.8	26
231	Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition. Applied Surface Science, 2006, 252, 4882-4885.	6.1	48
232	Undercooling and demixing of copper-based alloys. Microgravity Science and Technology, 2006, 18, 174-177.	1.4	12
233	Electrical and structural properties of La0.8Sr0.2Mn0.5Co0.5O3 $\hat{A}\pm\hat{l}$ films produced by pulsed laser deposition. Applied Surface Science, 2005, 247, 466-470.	6.1	17
234	The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy. Acta Materialia, 2004, 52, 1989-1995.	7.9	33

NINI PRYDS

#	Article	IF	CITATIONS
235	Crystallization of Cu ₆₀ Ti ₂₀ Zr ₂₀ metallic glass with and without pressure. Journal of Materials Research, 2003, 18, 895-898.	2.6	37
236	The Determination of Dynamic and Equlibrium Solid/Liquid Transformation Data For Sn–Pb Using DSC. Magyar Apróvad Közlemények, 2001, 64, 887-894.	1.4	15
237	The Solidification in the Presence of a Metastable Miscibility Gap: The Case of Co-Cu and Co-Cu-X Alloys. Materials Science Forum, 0, 649, 41-46.	0.3	2