Gopalan Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5133092/publications.pdf

Version: 2024-02-01

269 papers

13,572 citations

44069 48 h-index 24258 110 g-index

278 all docs

278 docs citations

times ranked

278

6576 citing authors

#	Article	IF	CITATIONS
1	Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008, 103, .	2.5	3,224
2	Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Physical Review B, $2001, 64, .$	3.2	563
3	Magnetoelectric Composites. Annual Review of Materials Research, 2010, 40, 153-178.	9.3	538
4	Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Physical Review B, 2002, 65, .	3.2	465
5	Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Physical Review B, 2003, 68, .	3.2	451
6	Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Physical Review B, 2003, 68, .	3.2	391
7	Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites. Physical Review B, 2003, 67, .	3.2	287
8	The 2016 oxide electronic materials and oxide interfaces roadmap. Journal Physics D: Applied Physics, 2016, 49, 433001.	2.8	266
9	Introduction to magnetoelectric coupling and multiferroic films. Journal Physics D: Applied Physics, 2011, 44, 243001.	2.8	261
10	Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Applied Physics Letters, 2006, 88, 143503.	3.3	256
11	VOLTAGE CONTROL OF MAGNETISM IN MULTIFERROIC HETEROSTRUCTURES AND DEVICES. Spin, 2012, 02, 1240004.	1.3	252
12	Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. Journal of Applied Physics, 2002, 92, 7681-7683.	2.5	215
13	Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Physical Review B, 2004, 70, .	3.2	181
14	Exchange constants in spinel ferrites. Physical Review B, 1979, 19, 499-508.	3.2	154
15	Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite. Physical Review B, 2001, 64, .	3.2	135
16	Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Physical Review B, 2002, 66, .	3.2	131
17	Ferrite-ferroelectric hybrid wave phase shifters. Applied Physics Letters, 2007, 90, 031913.	3.3	127
18	Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Applied Physics A: Materials Science and Processing, 2004, 78, 33-36.	2.3	120

#	Article	IF	CITATIONS
19	Resonant magnetoelectric coupling in trilayers of ferromagnetic alloys and piezoelectric lead zirconate titanate: The influence of bias magnetic field. Physical Review B, 2005, 71, .	3.2	109
20	Theory of magnetoelectric effects in ferrite piezoelectric nanocomposites. Physical Review B, 2007, 75,	3.2	105
21	Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers. Journal of Applied Physics, 2009, 105, .	2.5	105
22	Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Applied Physics Letters, 2010, 96, .	3.3	104
23	Magnetoelectric microwave phase shifter. Applied Physics Letters, 2006, 88, 183507.	3.3	98
24	Measurement Techniques of the Magneto-Electric Coupling in Multiferroics. Materials, 2017, 10, 963.	2.9	93
25	Ferrite-Piezoelectric Multilayers for Magnetic Field Sensors. IEEE Sensors Journal, 2006, 6, 935-938.	4.7	87
26	Giant magnetoelectric effects in layered composites of nickel zinc ferrite and lead zirconate titanate. Solid State Communications, 2002, 124, 373-378.	1.9	85
27	Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers. Physical Review B, 2008, 78, .	3.2	85
28	Electrically tunable microwave filters based on ferromagnetic resonance in ferrite-ferroelectric bilayers. Electronics Letters, 2005, 41, 596.	1.0	80
29	Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures. Physical Review B, 2005, 72, .	3.2	79
30	Structural and magnetoelectric properties of MFe 2 O 4 ?PZT (M?=?Ni,Co) and La x (Ca,Sr) 1-x MnO 3 ?PZT multilayer composites. Applied Physics A: Materials Science and Processing, 2004, 78, 721-728.	2.3	77
31	Millimeter-wave magnetoelectric effects in bilayers of barium hexaferrite and lead zirconate titanate. Applied Physics Letters, 2006, 89, 152508.	3.3	75
32	Low-frequency and resonance magnetoelectric effects in piezoelectric and functionally stepped ferromagnetic layered composites. Physical Review B, $2011,84,\ldots$	3.2	74
33	Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Applied Physics Letters, 2012, 100, .	3.3	74
34	Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Applied Physics Letters, 2005, 87, 222507.	3.3	71
35	Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. Journal of Electroceramics, 2007, 19, 243-250.	2.0	69
36	Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. Journal of Magnetism and Magnetic Materials, 2014, 358-359, 98-104.	2.3	69

3

#	Article	IF	CITATIONS
37	Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives. Energy Harvesting and Systems, 2016, 3, 1-42.	2.7	69
38	Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B, $2011, 84, \ldots$	3.2	67
39	Resonance magnetoelectric interactions due to bending modes in a nickel-lead zirconate titanate bilayer. Applied Physics Letters, 2008, 92, .	3.3	66
40	Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Physical Review B, 2012, 85, .	3.2	64
41	Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices. Journal of Applied Physics, 2009, 105, .	2.5	59
42	Ferrite-Piezoelectric Layered Structures: Microwave Magnetoelectric Effects and Electric Field Tunable Devices. Ferroelectrics, 2006, 342, 65-71.	0.6	58
43	Inverse magnetoelectric effects in a ferromagnetic–piezoelectric layered structure. Journal of Materials Research, 2007, 22, 2074-2080.	2.6	58
44	Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Applied Physics Letters, 2011, 99, .	3.3	58
45	Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale, 2012, 4, 3218.	5.6	58
46	Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Applied Physics Letters, 2009, 94, 253109.	3.3	54
47	The linear temperature dependence of the paramagnetic resonance linewidth in the manganate perovskites and. Journal of Physics Condensed Matter, 1996, 8, 11283-11289.	1.8	50
48	Enhancing the sensitivity of magnetoelectric sensors by increasing the operating frequency. Journal of Applied Physics, $2011,110,.$	2.5	50
49	Low-frequency nonlinear magnetoelectric effects in a ferrite-piezoelectric multilayer. Applied Physics Letters, 2006, 89, 142510.	3.3	48
50	Nonlinear electric field tuning characteristics of yttrium iron garnet–lead zirconate titanate microwave resonators. Applied Physics Letters, 2008, 93, .	3.3	48
51	Low frequency and microwave magnetoelectric effects in thick film heterostructures of lithium zinc ferrite and lead zirconate titanate. Solid State Communications, 2003, 128, 261-266.	1.9	47
52	Dynamic magnetoelectric effects in bulk and layered composites of cobalt zinc ferrite and lead zirconate titanate. Applied Physics A: Materials Science and Processing, 2005, 80, 891-897.	2.3	47
53	Microwave magnetoelectric effects in ferrite—piezoelectric composites and dual electric and magnetic field tunable filters. Journal of Electroceramics, 2010, 24, 5-9.	2.0	47
54	Controlled self-assembly of multiferroic core-shell nanoparticles exhibiting strong magneto-electric effects. Applied Physics Letters, 2014, 104, .	3.3	47

#	Article	IF	CITATIONS
55	Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Physical Review B, 2012, 86, .	3.2	44
56	Multiferroic composite for combined detection of static and alternating magnetic fields. Materials Letters, 2012, 66, 282-284.	2.6	44
57	Giant magnetoelectric effect in composite materials in the region of electromechanical resonance. Technical Physics Letters, 2004, 30, 6-8.	0.7	43
58	Ferriteâ^piezoelectric microwave phase shifter: studies on electric field tunability. Electronics Letters, 2005, 41, 1066.	1.0	43
59	Microwave resonators based on single-crystal yttrium iron garnet and lead magnesium niobate-lead titanate layered structures. Journal of Applied Physics, 2008, 103, .	2.5	43
60	Magnetization-graded ferromagnets: The magnetic analogs of semiconductor junction elements. Applied Physics Letters, 2005, 87, 082503.	3.3	42
61	A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Applied Physics Letters, 2012, 100, .	3.3	41
62	Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3:xCoFe2O4 nanocomposite films. Applied Physics Letters, 2013, 102, .	3.3	41
63	Internal magnetostatic potentials of magnetization-graded ferromagnetic materials. Applied Physics Letters, 2007, 90, 062502.	3.3	40
64	Nonlinear resonant magnetoelectric interactions and efficient frequency doubling in a ferromagnetic-ferroelectric layered structure. Journal of Applied Physics, 2013, 113, .	2.5	37
65	Antenna miniaturization with ferrite ferroelectric composites. Microwave and Optical Technology Letters, 2008, 50, 3154-3157.	1.4	36
66	Magnetically tuned mechanical resonances in magnetoelectric multilayer capacitors. Applied Physics Letters, 2009, 95, .	3.3	36
67	Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics. Journal of Magnetism and Magnetic Materials, 2019, 473, 131-135.	2.3	36
68	Modeling of Magnetoelectric Effect in Ferromagnetic/Piezoelectric Multilayer Composites. Ferroelectrics, 2002, 280, 165-175.	0.6	34
69	Resonant amplification of the magnetoelectric effect in ferrite-piezoelectric composites. Physics of the Solid State, 2004, 46, 1674-1680.	0.6	34
70	MICROWAVE MAGNETOELECTRIC EFFECTS AND SIGNAL PROCESSING DEVICES. Integrated Ferroelectrics, 2006, 83, 89-98.	0.7	32
71	Experimental determination of the magnetoelectric coupling coefficient via piezoelectric measurements. Measurement Science and Technology, 2008, 19, 045106.	2.6	32
72	Influence of bias electric field on magnetoelectric interactions in ferromagnetic-piezoelectric layered structures. Applied Physics Letters, 2009, 94, .	3.3	32

#	Article	IF	CITATIONS
73	Sub-Terahertz Magnetic and Dielectric Excitations in Hexagonal Ferrites. IEEE Transactions on Magnetics, 2011, 47, 289-294.	2.1	32
74	Low-frequency and resonance magnetoelectric effects in nickel ferrite-PZT bulk composites. Technical Physics, 2012, 57, 44-47.	0.7	32
75	Tutorial: Product properties in multiferroic nanocomposites. Journal of Applied Physics, 2018, 124, .	2.5	32
76	Structural and magnetic properties of lithium ferrite (LiFe5O8) thin films: Influence of substrate on the octahedral site order. Applied Physics Letters, 2011, 98, .	3.3	31
77	Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Applied Physics Letters, 2014, 104, .	3.3	31
78	Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field. Solid State Communications, 2004, 132, 13-17.	1.9	30
79	Magnetoelectric interactions in bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate: Evidence for strong coupling in single crystals and epitaxial films. Applied Physics Letters, 2005, 86, 222506.	3.3	30
80	Resonance magnetoelectric effects in magnetostrictive-piezoelectric three-layer structures. Journal of Applied Physics, 2007, 102, 093901.	2.5	30
81	Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers. Applied Physics Letters, 2008, 93, 142503.	3.3	30
82	Ferroelectric properties of BiFeO ₃ thin films deposited on substrates with large lattice mismatch. Physica Status Solidi - Rapid Research Letters, 2010, 4, 79-81.	2.4	30
83	Enhanced sensitivity of magnetoelectric sensors by tuning the resonant frequency. Applied Physics Letters, 2011, 99, .	3.3	30
84	Resonance mixing of alternating current magnetic fields in a multiferroic composite. Journal of Applied Physics, $2013, 113, \ldots$	2.5	30
85	Power conversion efficiency and resistance tunability in coil-magnetoelectric gyrators. Applied Physics Letters, 2016, 109, .	3.3	30
86	Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics. Journal Physics D: Applied Physics, 2018, 51, 154003.	2.8	30
87	Magnetoelectric effects in layered samples of lead zirconium titanate and nickel films. Solid State Communications, 2008, 148, 55-58.	1.9	29
88	Q factor of dual-tunable microwave resonators based on yttrium iron garnet and barium strontium titanate layered structures. Journal of Applied Physics, 2008, 103, 063908.	2.5	29
89	Sub-THz dielectric resonance in single crystal yttrium iron garnet and magnetic field tuning of the modes. Journal of Applied Physics, $2011,110,110$	2.5	29
90	Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators. Applied Physics Letters, 2017, 110 , .	3.3	29

#	Article	IF	Citations
91	Highly efficient solid state magnetoelectric gyrators. Applied Physics Letters, 2017, 111, .	3.3	29
92	Magnetoelectric Effects in Composites of Nickel Ferrite and Barium Lead Zirconate Titanate. Ferroelectrics, 2002, 280, 177-185.	0.6	28
93	Inâ€plane dielectric and magnetoelectric studies of BiFeO ₃ . Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1207-1212.	1.8	28
94	Converse magnetoelectric effects in a galfenol and lead zirconate titanate bilayer. Journal of Applied Physics, 2009, 105, 123918.	2.5	27
95	A strain engineered voltage tunable millimeterâ€wave ferrite phase shifter. Microwave and Optical Technology Letters, 2011, 53, 261-264.	1.4	27
96	Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites. Sensors, 2016, 16, 262.	3.8	27
97	Microwave and MM-wave magnetoelectric interactions in ferrite-ferroelectric bilayers. European Physical Journal B, 2009, 71, 371-375.	1.5	26
98	Flexural deformation and bending mode of magnetoelectric nanobilayer. Journal of Applied Physics, 2009, 106, .	2.5	26
99	Magnetoelectric properties of particulate and bi-layer PMN-PT/CoFe2O4 composites. Journal of Magnetism and Magnetic Materials, 2012, 324, 695-703.	2.3	25
100	Upper limit for power conversion in magnetoelectric gyrators. Applied Physics Letters, 2017, 111, .	3.3	25
101	Effects of highâ€ŧemperature annealing on amorphous BiFeO3with nonmagnetic substitutions. Applied Physics Letters, 1991, 58, 2441-2443.	3.3	24
102	Resonance magnetoelectric interactions in an asymmetric ferromagnetic-ferroelectric layered structure. Journal of Applied Physics, 2011, 109, .	2.5	24
103	Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions. Materials, 2018, 11, 18.	2.9	24
104	Structure, magnetism, and tunable microwave properties of pulsed laser deposition grown barium ferrite/barium strontium titanate bilayer films. Journal of Applied Physics, 2007, 101, 09M503.	2.5	23
105	Palladium-based ferroelectrics and multiferroics: Theory and experiment. Physical Review B, 2017, 95, .	3.2	23
106	Probing magnon–magnon coupling in exchange coupled Y\$\$_3\$\$Fe\$\$_5\$\$O\$\$_{12}\$\$/Permalloy bilayers with magneto-optical effects. Scientific Reports, 2020, 10, 12548.	3.3	23
107	Electric-field-induced reorientation and flip in domain magnetization and light diffraction in an yttrium-iron-garnet/lead-zirconate-titanate bilayer. Physical Review B, 2013, 87, .	3.2	22
108	Power Conversion Efficiency and Equivalent Input Loss Factor in Magnetoelectric Gyrators. IEEE Transactions on Industrial Electronics, 2019, 66, 2499-2505.	7.9	21

#	Article	IF	Citations
109	Low-frequency and resonance magnetoelectric effects in lead zirconate titanate and single-crystal nickel zinc ferrite bilayers. Journal of Materials Research, 2007, 22, 2130-2135.	2.6	20
110	Microwave magnetoelectric effects in bilayers of piezoelectrics and ferrites with cubic magnetocrystalline anisotropy. Journal of Applied Physics, 2010, 108, 063923.	2.5	20
111	The role of SrRuO3 bottom layer in strain relaxation of BiFeO3 thin films deposited on lattice mismatched substrates. Journal of Applied Physics, 2011, 109, .	2.5	20
112	Multiferroic bending mode resonators and studies on temperature dependence of magnetoelectric interactions. Applied Physics Letters, 2012, 100, .	3.3	20
113	Nonlinear multiferroic phase shifters for microwave frequencies. Applied Physics Letters, 2014, 104, 052911.	3.3	20
114	Switchable 3-0 magnetoelectric nanocomposite thin film with high coupling. Nanoscale, 2017, 9, 3246-3251.	5.6	20
115	Strain effect on magnetoelectric coupling of epitaxial NFO/PZT heterostructure. Journal of Alloys and Compounds, 2020, 818, 152871.	5.5	20
116	High-Q active ring microwave resonators based on ferrite-ferroelectric layered structures. Applied Physics Letters, 2008, 92, .	3.3	19
117	Microwave magnetoelectric effects in bilayers of single crystal ferrite and functionally graded piezoelectric. Journal of Applied Physics, 2008, 104, 113910.	2.5	19
118	Low-frequency magnetoelectric interactions in single crystal and polycrystalline bilayers of lanthanum strontium manganite and lead zirconate titanate. Journal of Materials Science, 2009, 44, 5120-5126.	3.7	19
119	Electromechanical resonance in ferrite-piezoelectric nanopillars, nanowires, nanobilayers, and magnetoelectric interactions. Journal of Applied Physics, 2010, 107, .	2.5	19
120	Hexagonal ferriteâ€piezoelectric composites for dual magnetic and electric field tunable 8–25 GHz microstripline resonators and phase shifters. Microwave and Optical Technology Letters, 2012, 54, 1215-1218.	1.4	19
121	High frequency magneto-dielectric effects in self-assembled ferrite-ferroelectric core-shell nanoparticles. AIP Advances, 2014, 4, .	1.3	19
122	FERROMAGNETIC-FERROELECTRIC LAYERED STRUCTURES: MAGNETOELECTRIC INTERACTIONS AND DEVICES. Integrated Ferroelectrics, 2005, 71, 45-57.	0.7	18
123	Is the magnetoelectric coupling in stickup bilayers linear?. Journal of Applied Physics, 2007, 101, 083902.	2.5	18
124	Magnetoelectric effects in bilayers of lead zirconate titanate and single crystal hexaferrites. Applied Physics Letters, 2008, 92, .	3.3	18
125	Electric field tuning of domain magnetic resonances in yttrium iron garnet films. Applied Physics Letters, 2013, 102, 222407.	3.3	18
126	Current-induced nonlinear magnetoelectric effects in strontium hexaferrite. Physical Review B, 2016, 94, .	3.2	18

#	Article	lF	CITATIONS
127	A Highly Efficient Selfâ€Biased Nickelâ€Zinc Ferrite/Metglas/PZT Magnetoelectric Gyrator. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800043.	2.4	18
128	Magnetoelectric microwave attenuator. Electronics Letters, 2007, 43, 674.	1.0	17
129	Planar ferrite-piezoelectric composite microwave resonator with electric and magnetic frequency tuning. Technical Physics Letters, 2008, 34, 593-596.	0.7	17
130	Magnetoelectric effects in ferromagnetic films on ferroelectric substrates. Journal of Physics Condensed Matter, 2008, 20, 425206.	1.8	17
131	Magnetoelectric Interactions in Composites of Ferrite Films on Lattice-Matched Substrates and Ferroelectrics. Physical Review Applied, 2019, 11, .	3.8	17
132	Electric switching in bistable ferrite-piezoelectric microwave resonator. Technical Physics Letters, 2010, 36, 166-169.	0.7	16
133	Magnetic field tunable 18–36 GHz dielectric bandpass filter. Electronics Letters, 2012, 48, 98.	1.0	16
134	Resonance magnetoelectric effects in a layered composite under magnetic and electrical excitations. Journal of Applied Physics, 2012, 112, .	2.5	16
135	Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures. Journal of Applied Physics, 2012, 111, .	2.5	16
136	Multiferroic oxide composites: Synthesis, characterisation and applications. Materials Science and Technology, 2014, 30, 1625-1632.	1.6	16
137	Observations of magnetization reversal and magnetic clusters in copper ferrite films. Journal of Applied Physics, 1994, 75, 6822-6824.	2.5	15
138	Ultralow-frequency magnetoelectric effect in a multilayer ferrite-piezoelectric structure. Technical Physics, 2007, 52, 727-733.	0.7	15
139	Nonlinear converse magnetoelectric effects in a ferromagnetic-piezoelectric bilayer. Applied Physics Letters, 2018, 113, .	3.3	15
140	Bidirectional tunable ferrite-piezoelectric trilayer magnetoelectric inductors. Applied Physics Letters, 2018, 113, .	3.3	15
141	Room temperature magnetoelectric coupling in Fe-doped sodium bismuth titanate ceramics. Journal of Alloys and Compounds, 2020, 830, 154679.	5.5	15
142	Magnetic and Dielectric Excitations in the W-Band in Aluminum Substituted Barium and Strontium Hexaferrites. IEEE Transactions on Magnetics, 2009, 45, 2053-2058.	2.1	14
143	Voltage transformer based on inverse magnetoelectric effect. Technical Physics Letters, 2012, 38, 93-95.	0.7	14
144	A magnetoelectric sensor of threshold DC magnetic fields. Journal of Applied Physics, 2017, 121, .	2.5	14

#	Article	IF	CITATIONS
145	Enhanced stability of magnetoelectric gyrators under high power conditions. Applied Physics Letters, 2017, 111, .	3.3	14
146	Stability enhancement of yttrium substituted nickel zinc ferrite/PZT magnetoelectric gyrators under high power conditions. Applied Physics Letters, 2018, 112 , .	3.3	14
147	Self-biased magnetoelectric gyrators in composite of samarium substituted nickel zinc ferrites and piezoelectric ceramics. AIP Advances, 2019, 9, .	1.3	14
148	Simultaneous Optical and Electrical Spin-Torque Magnetometry with Phase-Sensitive Detection of Spin Precession. Physical Review Applied, 2019, 11, .	3.8	14
149	Static and high frequency magnetic properties of amorphous BiFeO3–CuFe2O4compounds. Journal of Applied Physics, 1991, 70, 6317-6319.	2.5	13
150	Dispersion characteristics for low-frequency magnetoelectric coefficients in bulk ferrite-piezoelectric composites. Solid State Communications, 2007, 142, 515-518.	1.9	13
151	Tuning the Magneto-Electric Effect of Multiferroic Composites via Crystallographic Texture. IEEE Transactions on Magnetics, 2008, 44, 3017-3020.	2.1	13
152	FREQUENCY DEPENDENCE OF MAGNETOELECTRIC VOLTAGE FOR A MULTILAYER FERRITE-PIEZOELECTRIC STRUCTURE WITH FINITE CONDUCTIVITY. Integrated Ferroelectrics, 2009, 106, 23-28.	0.7	13
153	Inverse magnetoelectric effect in ferrite-piezoelectric structures. Technical Physics Letters, 2010, 36, 984-986.	0.7	13
154	Current tunable barium hexaferrite millimeter wave resonator. Microwave and Optical Technology Letters, 2018, 60, 458-462.	1.4	13
155	Speed of a ferriteâ€"ferroelectric microwave planar resonator. Technical Physics, 2010, 55, 900-903.	0.7	12
156	Inverse magnetoelectric effect in disk-shaped samples of ferrite piezoelectric composites. Physics of the Solid State, 2011, 53, 1832-1838.	0.6	12
157	Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions. Journal of Applied Physics, 2015, 117, .	2.5	12
158	Theory of tunable magnetoelectric inductors in ferrite-piezoelectric layered composite. Journal Physics D: Applied Physics, 2019, 52, 165001.	2.8	12
159	Highly efficient power conversion in magnetoelectric gyrators with high quality factor. Review of Scientific Instruments, 2019, 90, 015004.	1.3	12
160	Coupled magnetostatic and electromagnetic oscillations in hexaferrite-dielectric heterostructures. Journal of Applied Physics, 2009, 105, 083912.	2.5	11
161	Magneto-electric interactions at bending resonance in an asymmetric multiferroic composite: Theory and experiment on the influence of electrode position. Journal of Applied Physics, 2015, 117 , .	2.5	11
162	A dual-output magnetoelectric gyrator. Journal Physics D: Applied Physics, 2019, 52, 065003.	2.8	11

#	Article	IF	CITATIONS
163	Investigation on the Magnetic Noise of Stacked Magnetostricitive-Piezoelectric Laminated Composites. Sensor Letters, 2012, 10, 961-965.	0.4	11
164	Magnetoacoustic resonance in ferrite-ferroelectric nanopillars. European Physical Journal B, 2009, 71, 367-370.	1.5	10
165	Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory. Journal of Applied Physics, 2015, 118, 013903.	2.5	10
166	Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Advances, 2018, 8, 055803.	1.3	10
167	Magnetoelectric response of a multilayer ferrite-piezoelectric structure to magnetic field pulses. Technical Physics Letters, 2004, 30, 769-771.	0.7	9
168	Superstructures of self-assembled multiferroic core-shell nanoparticles and studies on magneto-electric interactions. Applied Physics Letters, 2014, 105, .	3.3	9
169	Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures. AIP Advances, 2016, 6, .	1.3	9
170	Theory of magnetoelectric effects in multiferroic coreâ€"shell nanofibers of hexagonal ferrites and ferroelectrics. Journal Physics D: Applied Physics, 2018, 51, 284004.	2.8	9
171	Nonlinear magnetoelectric effects in Y-type hexaferrite microwave resonators. Journal of Applied Physics, 2020, 128, .	2.5	9
172	Disentangling the power transfer process by non-contact optical measurement in nickel-zinc ferrite/piezoelectric magnetoelectric gyrators. Journal of Magnetism and Magnetic Materials, 2021, 524, 167680.	2.3	9
173	Converse magnetoelectric effects in composites of liquid phase epitaxy grown nickel zinc ferrite films and lead zirconate titanate: Studies on the influence of ferrite film parameters. Physical Review Materials, 2019, 3, .	2.4	9
174	Resonance Magnetoelectric Effect in Multilayer Composites. Ferroelectrics, 2002, 280, 187-197.	0.6	8
175	Piezoinductive effects in a piezoelectric ring with metal electrodes. Journal of Applied Physics, 2009, 106, .	2.5	8
176	Theory of domain wall motion mediated magnetoelectric effects in a multiferroic composite. Physical Review B, 2014, 90, .	3.2	8
177	Fabrication and characterization of a MEMS nano-Tesla ferromagnetic-piezoelectric magnetic sensor array. Applied Physics Letters, 2016, 108, .	3.3	8
178	A magnetoelectric composite based signal generator. Applied Physics Letters, 2016, 108, .	3.3	8
179	Self-assembly of multiferroic core-shell composites using DNA functionalized nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 460, 424-431.	2.3	8
180	Magneto-electric interactions in composites of self-biased Y- and W-type hexagonal ferrites and lead zirconate titanate: Experiment and theory. Journal of Applied Physics, 2019, 126, .	2.5	8

#	Article	IF	CITATIONS
181	Studies of Multiferroic Palladium Perovskites. Scientific Reports, 2019, 9, 1685.	3.3	8
182	Acoustically Driven Ferromagnetic Resonance in Diverse Ferromagnetic Thin Films. IEEE Transactions on Magnetics, $2021, 57, 1-5$.	2.1	8
183	Strain transfer in ferroelectric-ferrimagnetic magnetoelectric composite. Physical Review B, 2021, 103,	3.2	8
184	Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite. Physical Review B, 2021, 104, .	3.2	8
185	Electrical transport and magnetoresistance in thick films of lanthanum calcium manganite prepared by tape casting. Applied Physics Letters, 2002, 80, 464-466.	3.3	7
186	The floating zone crystal growth of Ni, Co, Ni–Co, Ni–Zn, and Co–Zn ferrospinels under high oxygen pressure. Journal of Crystal Growth, 2005, 275, e733-e738.	1.5	7
187	Magnetoacoustic resonance in tangentially magnetized ferrite-piezoelectric bilayers. Technical Physics Letters, 2006, 32, 1021-1023.	0.7	7
188	Frequency dependence of the magnetoelectric effect in ceramic composites based on lead zirconate titanate and nickel ferrite. Technical Physics Letters, 2008, 34, 83-86.	0.7	7
189	Bending Resonance in a Magnetostrictive-Piezoelectric Bilayer and Magnetoelectric Interactions. Integrated Ferroelectrics, 2011, 126, 87-93.	0.7	7
190	A slot antenna with magnetoelectric elements. Microwave and Optical Technology Letters, 2013, 55, 533-535.	1.4	7
191	Converse magneto-electric effects in a core–shell multiferroic nanofiber by electric field tuning of ferromagnetic resonance. Scientific Reports, 2020, 10, 20170.	3.3	7
192	Nonlinear magnetoelectric effects in Al-substituted strontium hexaferrite. Scientific Reports, 2021, 11, 8733.	3.3	7
193	Thickness-dependence of magnetic anisotropy and domain structure in Ni thin films grown on a PMN-PT substrate. Smart Materials and Structures, 2020, 29, 095019.	3.5	7
194	Magnetoelectric effect in Ni <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo linebreak="badbreak" linebreakstyle="after">a^*</mml:mo><mml:mi mathvariant="normal">x</mml:mi></mml:mrow></mml:msub></mml:math> ZnxFe2O4/PZT thin film	2.1	7
195	heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 426, 127897. ac susceptibility studies on leadâ€substituted Biâ€Srâ€Caâ€Cuâ€O superconductors. Journal of Applied Physics, 1991, 69, 4899-4901.	2.5	6
196	Resonance magnetoelectric effects in a piezoelectric bimorph. Journal of Applied Physics, 2011, 110, .	2.5	6
197	Millimeter-wave magneto-dielectric effects in self-assembled ferrite-ferroelectric core-shell nanoparticles. Journal of Applied Physics, 2015, 117, .	2.5	6
198	Room temperature magnetoelectric coupling and relaxor-like multiferroic nature in a biphase of cubic pyrochlore and spinel. Journal of Applied Physics, 2019, 126, 044103.	2.5	6

#	Article	IF	CITATIONS
199	Special issue on magnetoelectrics and their applications. Journal Physics D: Applied Physics, 2019, 52, 100301.	2.8	6
200	Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers. MRS Communications, 2020, 10, 230-241.	1.8	6
201	Controllable electric field tuning of anisotropic magnetic response of Ni/PMN-PT heterostructures. Applied Surface Science, 2021, 538, 147954.	6.1	6
202	Evidence for strain control of magnetic anisotropy in epitaxial nickel ferrite thin films grown on strontium titanate substrates. Materials Research Bulletin, 2021, 138, 111214.	5.2	6
203	Magneto-transport properties of Bi substituted thin films of La–Ca–Mn–O. Applied Physics Letters, 1997, 70, 667-669.	3.3	5
204	Magnetic transitions and electrical transport in lanthanum strontium manganite: Effects of substitutions and high pressure. Applied Physics Letters, 2001, 79, 641-643.	3.3	5
205	Effects of exchange interactions on magnetoacoustic resonance in layered nanocomposites of yttrium iron garnet and lead zirconate titanate. Journal of Materials Research, 2007, 22, 2174-2178.	2.6	5
206	Improved Tunability in Metglas/Ferrite/PZT Magnetoelectric Tunable Inductors. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	5
207	A Piezoelectric Mn-Doped PMN-PT/Metglas Magnetoelectric Gyrator: Enhanced Power Efficiency at Reduced Size. IEEE Sensors Journal, 2020, 20, 752-759.	4.7	5
208	Field-Orientation-Dependent Dynamic Strain Induced Anisotropic Magnetoelectric Responses in Bi-layered Ferrite/Piezoelectric Composites. Journal of Electronic Materials, 2020, 49, 1120-1130.	2.2	5
209	Strong Converse Magnetoelectric Effect in a Composite of Weakly Ferromagnetic Iron Borate and Ferroelectric Lead Zirconate Titanate. Physical Review Applied, 2020, 14, .	3.8	5
210	Non-reciprocal voltage–current and impedance gyration effects in ferrite/piezoelectric toroidal magnetoelectric composites. Applied Physics Letters, 2021, 118, .	3.3	5
211	In-plane current induced nonlinear magnetoelectric effects in single crystal films of barium hexaferrite. Scientific Reports, 2022, 12, 5374.	3.3	5
212	Effects of high-temperature annealing on magnetic ordering in thin films of Bi2O3-CaO-Fe2O3. Applied Physics A: Solids and Surfaces, 1992, 55, 549-553.	1.4	4
213	Magnetic ordering in amorphous Bi2O3â€ZnOâ€Fe2O3films sputtered at high temperatures. Journal of Applied Physics, 1993, 73, 5713-5715.	2.5	4
214	Three-dimensional left-handed material lens. Applied Physics Letters, 2007, 91, .	3.3	4
215	A magnetic field controlled negativeâ€index microwave lens. Microwave and Optical Technology Letters, 2008, 50, 2804-2807.	1.4	4
216	Nonreciprocal millimeter wave latching phase shifter utilizing magnetodielectric phase-frequency bistability effect. Microwave and Optical Technology Letters, 2014, 56, 1759-1764.	1.4	4

#	Article	IF	Citations
217	Mode Splitting in 37–42 GHz Barium Hexaferrite Resonator: Theory and Device Applications. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	4
218	Specific Features of the Magnetoelectric Effect in Permendur–Quartz–Permendur Structures in the Region of Electromechanical Resonance. Technical Physics Letters, 2019, 45, 436-438.	0.7	4
219	Magnetostriction via Magnetoelectricity: Using Magnetoelectric Response to Determine the Magnetostriction Characteristics of Composite Multiferroics. Technical Physics Letters, 2019, 45, 1152-1154.	0.7	4
220	An electric field controlled dual resonator magnetoâ€electric bandâ€stop filter. Microwave and Optical Technology Letters, 2019, 61, 873-877.	1.4	4
221	Undistorted 180° phase reversal of magnetoelectric coupling in bi-layered multiferroic laminate. Journal of Magnetism and Magnetic Materials, 2020, 494, 165802.	2.3	4
222	Dimension effects of a magnetoelectric gyrator with FeCoSiB/Pb(Zr,Ti)O3 layered composites core for efficient power conversion. Sensors and Actuators A: Physical, 2020, 302, 111815.	4.1	4
223	High-resolution magnetic sensors in ferrite/piezoelectric heterostructure with giant magnetodielectric effect at zero bias field. Review of Scientific Instruments, 2021, 92, 045006.	1.3	4
224	Low-Frequency Magnetoelectric Effects in Magnetostrictive–Piezoelectric Bilayers: Longitudinal and Bending Deformations. Journal of Composites Science, 2021, 5, 287.	3.0	4
225	Threshold fields for lowâ€frequency oscillations and chaos in parallel pump instabilities in YIG films. Journal of Applied Physics, 1991, 69, 5730-5732.	2.5	3
226	Magnetic and high-pressure magnetotransport properties of cesium-substituted lanthanum calcium manganites. Applied Physics A: Materials Science and Processing, 2001, 72, 333-339.	2.3	3
227	Modelling of magneto-acoustic resonance in ferrite–piezoelectric bilayers. Journal Physics D: Applied Physics, 2009, 42, 215001.	2.8	3
228	Dielectric resonance in nickel ferrite for K and Ka-band filters. Microwave and Optical Technology Letters, 2014, 56, 814-818.	1.4	3
229	Ferrite-Piezoelectric Heterostructures for Microwave and Millimeter Devices: Recent Advances and Future Possibilities. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, S25-S29.	0.2	3
230	Self-assembly of nanostructures with multiferroic components using nucleic acid linkers. MRS Communications, 2017, 7, 20-26.	1.8	3
231	Magnetoelectric Effect in Three-Layer Asymmetric Structures in the Region of Bending Vibrational Modes. Physics of the Solid State, 2020, 62, 1338-1345.	0.6	3
232	Study of Electronic States in LaNiO ₃ /SrRuO ₃ Bilayers: Interfaceâ€Induced Magnetism and Charge Transfer. Physica Status Solidi (B): Basic Research, 2021, 258, 2000527.	1.5	3
233	Effects of magnetic-elastic anisotropy on magnetoelectric gyrator with ferrite/PZT/ferrite laminate for enhancement of power conversion efficiencies. Journal of Magnetism and Magnetic Materials, 2021, 540, 168451.	2.3	3
234	Magnetoelectric Effects in Ferromagnetic and Piezoelectric Multilayer Composites., 2004,, 35-55.		3

#	Article	IF	CITATIONS
235	Strain-Mediated Magneto-Electric Effects in Coaxial Nanofibers of Y/W-Type Hexagonal Ferrites and Ferroelectrics. Journal of Composites Science, 2021, 5, 268.	3.0	3
236	Magnetization and ferromagnetic resonance studies on amorphous films of Fe2O3â€Bi2O3â€Li2O. Journal of Applied Physics, 1994, 75, 6828-6830.	2.5	2
237	Ferromagnetic resonance in layered manganites: Evidence for short-range magnetic order. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 686-688.	2.3	2
238	Electric-Field-Induced Shift of the Magnetic Resonance Line in Ferrite–Piezoelectric Composites. Technical Physics Letters, 2005, 31, 673.	0.7	2
239	Electrically-tunable microwave phase shifter based on ferrite-piezoelectric layered structure. , 2008, , .		2
240	FUNCTIONALLY GRADED MAGNETOSTRICTIVE-PIEZOELECTRIC LAYERED COMPOSITES: STUDIES ON MAGNETO-ELECTRIC INTERACTIONS. Integrated Ferroelectrics, 2010, 111, 109-115.	0.7	2
241	Magneto-electric effects in functionally stepped magnetic nanobilayers on ferroelectric substrates: Observation and theory on the influence of interlayer exchange coupling. Journal of Applied Physics, 2014, 115, 193909.	2.5	2
242	Layered multiferroic composites. , 2015, , 55-70.		2
243	Passive ferrite resonator-based millimeter wave band components. , 2017, , .		2
244	Resonance magnetoelectric characteristics of Terfenol-D/Pb(Zr0.52Ti0.48)O3/Ni asymmetric three layered composites. IOP Conference Series: Materials Science and Engineering, 2019, 656, 012056.	0.6	2
245	Unusual magnetic ordering transitions in nanoscale biphasic LuFeO3: the role of the ortho–hexa phase ratio and the local structure. Journal of Materials Chemistry C, 2020, 8, 17000-17008.	5.5	2
246	Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. , 2020, , 191-293.		2
247	Magnetic properties of the mixed oxide LaMnO3–ABO3 (AB=PbZr, BaTi). Solid State Communications, 1999, 111, 79-83.	1.9	1
248	Ferroelectric and Magnetic Characterization of Ferroic Pb(Fe _{0.5} Nb _{0.5})O ₃ Ceramics. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	1
249	Microwave Magneto-Electric Interactions in Multiferroics. Materials Research Society Symposia Proceedings, 2006, 966, 1.	0.1	1
250	Simultaneous observation of magnetostatic backward volume waves and surface waves in single crystal barium ferrite platelets with in-plane easy axis. Journal of Applied Physics, 2012, 111, 023901.	2.5	1
251	Microwave and millimeter-wave multiferroic devices., 2015,, 241-264.		1
252	Magnetoelectric and magnetostriction characteristics of symmetric three layered structures of nickel - lead zirconate titanate – nickel and permendure – lead zirconate titanate – permendure. IOP Conference Series: Materials Science and Engineering, 2020, 939, 012023.	0.6	1

#	Article	IF	CITATIONS
253	Bi-stable magnetoelectric data flip-flop triggered by magnetic field. Journal of Materials Science: Materials in Electronics, 2021, 32, 2249-2257.	2.2	1
254	10.1007/s11455-008-1025-7., 2010, 34, 83.		1
255	Magneto-acoustic resonance in layered structure of ferrite and piezoelectric bimorph. Ferroelectrics, 2020, 569, 196-200.	0.6	1
256	Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in a Composite Structure with Yttrium Aluminum Garnet Substrate. Journal of Composites Science, 2022, 6, 203.	3.0	1
257	Surface Resistance at Microwave Frequencies in Transition Metal Ion Substituted Yttrium Barium Copper Oxide Superconductors. Physica Status Solidi A, 1990, 122, 355-359.	1.7	0
258	Magnetic Ordering In Amorphous Oxides. , 1993, , .		0
259	Temperature dependence of spin wave auto-oscillations in Sc-substituted yttrium iron garnet films. IEEE Transactions on Magnetics, 1995, 31, 3461-3463.	2.1	0
260	Microwave magnetoelectric devices. , 2004, , .		0
261	Ferrite-Piezoelectric Composites for Microwave Devices. , 2006, , .		0
262	Magnetoelectric Tunable Microwave Band-Pass Filter., 2007,,.		0
263	Design and fabrication of a MEMS magnetic sensor utilizing ferromagnetic-piezoelectric composites. , 2015, , .		0
264	Voltage control of magnetism in laminated LiFe $<$ inf $>$ 0 $<$ inf $>$ 0 $<$ inf $>$ PMN-PT multiferroic composites. , 2015, , .		0
265	Magnetoelectric characterization techniques. , 2015, , 41-54.		0
266	Magnetodielectric coupling in Ferromagnetic/Ferroelectric/Ferromagnetic spin capacitor. MRS Advances, 2017, 2, 241-246.	0.9	0
267	RECENT ADVANCES IN STUDIES ON THE MAGNETIC STRUCTURE OF NONCRYSTALLINE OXIDES. , 1995, , 99-136.		0
268	Microwave Nonlinear Magnetoelectric Effect in Zn2Y Hexaferrite. , 2020, , .		0
269	Strain induced anisotropy in liquid phase epitaxy grown nickel ferrite on magnesium gallate substrates. Scientific Reports, 2022, 12, 7052.	3.3	O