
Riccardo Casalini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5132570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intermittent-contact local dielectric spectroscopy of nanostructured interfaces. Nanotechnology, 2022, , .	1.3	1
2	Aromatic bisphenol Aâ€based elastomers via hydrosilylation chemistry. Journal of Applied Polymer Science, 2021, 138, 50053.	1.3	1
3	Azobenzene-Doped Liquid Crystals in Electrospun Nanofibrous Mats for Photochemical Phase Control. ACS Applied Nano Materials, 2021, 4, 297-304.	2.4	15
4	Photochemical phase and alignment control of a nematic liquid crystal in core-sheath nanofibers. Journal of Materials Chemistry C, 2021, 9, 12859-12867.	2.7	8
5	Flexible cyclic-olefin with enhanced dipolar relaxation for harsh condition electrification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
6	Controlled release of the insect repellent picaridin from electrospun nylonâ€6,6 nanofibers. Polymers for Advanced Technologies, 2020, 31, 3039-3047.	1.6	17
7	Dielectric Heating of Commercial Insulation Materials. , 2020, , .		1
8	Lateral resolution of electrostatic force microscopy for mapping of dielectric interfaces in ambient conditions. Nanotechnology, 2020, 31, 335710.	1.3	5
9	Surfactant Modulated Phase Transitions of Liquid Crystals Confined in Electrospun Coaxial Fibers. Langmuir, 2020, 36, 7916-7924.	1.6	13
10	On the pressure dependence of the thermodynamical scaling exponent <i>γ</i> . Soft Matter, 2020, 16, 4625-4631.	1.2	8
11	Dynamics of novel polybutadiene ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1074-1079.	2.4	2
12	Dipole-relaxation dynamics in a modified polythiourea with high dielectric constant for energy storage applications. Applied Physics Letters, 2019, 115, .	1.5	18
13	Comment on "Experimental Evidence for a State-Point-Dependent Density-Scaling Exponent of Liquid Dynamics― Physical Review Letters, 2019, 123, 189601.	2.9	9
14	Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104, 250-329.	16.0	428
15	The complex behavior of the "simplest―liquid: Breakdown of density scaling in tetramethyl tetraphenyl trisiloxane. Journal of Chemical Physics, 2019, 151, 174501.	1.2	11
16	On the experimental determination of the repulsive component of the potential from high pressure measurements: What is special about twelve?. Journal of Chemical Physics, 2019, 151, 194504.	1.2	9
17	Nonlinear dielectric spectroscopy of propylene carbonate derivatives. Journal of Chemical Physics, 2018, 148, 134506.	1.2	5
18	Electrospun Polymer Fibers Containing a Liquid Crystal Core: Insights into Semiflexible Confinement. Journal of Physical Chemistry C, 2018, 122, 16964-16973.	1.5	21

#	Article	IF	CITATIONS
19	Dynamics of poly(vinyl methyl ketone) thin films studied by local dielectric spectroscopy. Journal of Chemical Physics, 2017, 146, 203315.	1.2	6
20	Communication: Effect of density on the physical aging of pressure-densified polymethylmethacrylate. Journal of Chemical Physics, 2017, 147, 091104.	1.2	12
21	Pressure densification of a simple liquid. Journal of Non-Crystalline Solids, 2017, 475, 25-27.	1.5	11
22	SHORT TIME AND STRUCTURAL DYNAMICS IN POLYPROPYLENE GLYCOL NANOCOMPOSITE. Rubber Chemistry and Technology, 2017, 90, 264-271.	0.6	3
23	Local and Global Dynamics in Polypropylene Glycol/Silica Composites. Macromolecules, 2016, 49, 3919-3924.	2.2	34
24	Density scaling and decoupling in <i>o</i> -terphenyl, salol, and dibutyphthalate. Journal of Chemical Physics, 2016, 145, .	1.2	29
25	The "anomalous―dynamics of decahyroisoquinoline revisited. Journal of Chemical Physics, 2016, 144, 024502.	1.2	13
26	Segmental dynamics and the correlation length in nanoconfined PMMA. Polymer, 2016, 88, 133-136.	1.8	27
27	Extended model for the interaction of dielectric thin films with an electrostatic force microscope probe. Journal of Applied Physics, 2015, 118, .	1.1	13
28	The effect of nanoclay on the rheology and dynamics of polychlorinated biphenyl. Soft Matter, 2015, 11, 9379-9384.	1.2	5
29	Dynamic correlation length scales under isochronal conditions. Journal of Chemical Physics, 2015, 142, 064504.	1.2	35
30	Effect of Interface Interaction on the Segmental Dynamics of Poly(vinyl acetate) Investigated by Local Dielectric Spectroscopy. ACS Macro Letters, 2015, 4, 1022-1026.	2.3	14
31	Determination of the Thermodynamic Scaling Exponent for Relaxation in Liquids from Static Ambient-Pressure Quantities. Physical Review Letters, 2014, 113, 085701.	2.9	36
32	Effect of physical aging on Johari-Goldstein relaxation in La-based bulk metallic glass. Journal of Chemical Physics, 2014, 141, 104510.	1.2	35
33	Effect of Regioisomerism on the Local Dynamics of Polychlorostyrene. Macromolecules, 2014, 47, 4087-4093.	2.2	8
34	Investigation of the Role of the Acceptor Molecule in Bulk Heterojunction Photovoltaic Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 13798-13804.	1.5	13
35	Temperature Dependence of the Johari–Goldstein Relaxation in Poly(methyl methacrylate) and Poly(thiomethyl methacrylate). Macromolecules, 2013, 46, 330-334.	2.2	31

 $_{36}$ Density Scaling of the Structural and Johariâ \in Goldstein Secondary Relaxations in Poly(methyl) Tj ETQq0 0 0 rgBT / Qyerlock 10 Tf 50 62

#	Article	IF	CITATIONS
37	Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philosophical Magazine, 2013, 93, 468-477.	0.7	48
38	The fragility of liquids and colloids and its relation to the softness of the potential. Journal of Chemical Physics, 2012, 137, 204904.	1.2	9
39	Predicting the density-scaling exponent of a glass-forming liquid from Prigogine–Defay ratio measurements. Nature Physics, 2011, 7, 816-821.	6.5	122
40	Relaxation Dynamics of Poly(methyl acrylate) at Elevated Pressure. Macromolecules, 2011, 44, 6928-6934.	2.2	21
41	Density-scaling and the Prigogine–Defay ratio in liquids. Journal of Chemical Physics, 2011, 135, 224501.	1.2	23
42	Comparing dynamic correlation lengths from an approximation to the four-point dynamic susceptibility and from the picosecond vibrational dynamics. Physical Review E, 2011, 84, 042501.	0.8	21
43	On the low frequency loss peak in the dielectric spectrum of glycerol. Journal of Chemical Physics, 2011, 135, 094502.	1.2	11
44	Effect of crosslinking on the secondary relaxation in polyvinylethylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 582-587.	2.4	20
45	Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. Journal of Chemical Physics, 2010, 132, 144505.	1.2	76
46	Aging of the Secondary Relaxation to Probe Structural Relaxation in the Glassy State. Physical Review Letters, 2009, 102, 035701.	2.9	139
47	Density Scaling and Dynamic Correlations in Viscous Liquids. Journal of Physical Chemistry B, 2009, 113, 13134-13137.	1.2	33
48	Anomalous properties of the local dynamics in polymer glasses. Journal of Chemical Physics, 2009, 131, 114501.	1.2	42
49	Effect of Crosslinking on Segmental and Secondary Dynamics of Polyvinylethylene. AIP Conference Proceedings, 2008, , .	0.3	0
50	The inflection point in the pressure dependence of viscosity under high pressure: A comprehensive study of the temperature and pressure dependence of the viscosity of propylene carbonate. Journal of Chemical Physics, 2008, 128, 084511.	1.2	48
51	Role of hydrogen bonds in the supercooled dynamics of glass-forming liquids at high pressures. Physical Review B, 2008, 77, .	1.1	50
52	Effect of chain length on fragility and thermodynamic scaling of the local segmental dynamics in poly(methylmethacrylate). Journal of Chemical Physics, 2007, 126, 184903.	1.2	51
53	Effect of entropy on the dynamics of supercooled liquids: new results from high pressure data. Philosophical Magazine, 2007, 87, 459-467.	0.7	26
54	Enthalpy relaxation and fragility in polychlorinated biphenyls. Journal of Thermal Analysis and Calorimetry, 2006, 83, 87-90.	2.0	12

#	Article	IF	CITATIONS
55	Dispersion of the Structural Relaxation and the Vitrification of Liquids. Advances in Chemical Physics, 2006, , 497-593.	0.3	37
56	Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids. Journal of Chemical Physics, 2006, 125, 014505.	1.2	168
57	Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids. Journal of Chemical Physics, 2006, 125, 124508.	1.2	236
58	Why liquids are fragile. Physical Review E, 2005, 72, 031503.	0.8	63
59	Effect of chemical structure on the isobaric and isochoric fragility in polychlorinated biphenyls. Journal of Chemical Physics, 2005, 122, 134505.	1.2	34
60	Isobaric and isochoric fragilities and the influence of volume on the temperature dependence of local segmental relaxation in polyvinylethylene networks. Journal of Chemical Physics, 2005, 123, 204905.	1.2	8
61	Reply to "Comment on â€~Correlation between configurational entropy and structural relaxation time in glass-forming liquids' ― Physical Review B, 2005, 71, .	1.1	5
62	Temperature and Density Effects on the Local Segmental and Global Chain Dynamics of Poly(oxybutylene). Macromolecules, 2005, 38, 1779-1788.	2.2	75
63	Volume and Temperature Dependences of the Global and Segmental Dynamics in Polymers:Â Functional Forms and Implications for the Glass Transition. Macromolecules, 2005, 38, 4363-4370.	2.2	53
64	Scaling of the supercooled dynamics and its relation to the pressure dependences of the dynamic crossover and the fragility of glass formers. Physical Review B, 2005, 71, .	1.1	150
65	Do Theories of the Glass Transition, in which the Structural Relaxation Time Does Not Define the Dispersion of the Structural Relaxation, Need Revision?. Journal of Physical Chemistry B, 2005, 109, 17356-17360.	1.2	210
66	Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Reports on Progress in Physics, 2005, 68, 1405-1478.	8.1	637
67	Johari-Goldstein Relaxations during Physical Aging of Propylene Glycol Oligomers under High Pressure. AIP Conference Proceedings, 2004, , .	0.3	5
68	Scaling of the segmental relaxation times of polymers and its relation to the thermal expansivity. Colloid and Polymer Science, 2004, 283, 107-110.	1.0	62
69	Effects of the volume and temperature on the global and segmental dynamics in poly(propylene) Tj ETQq1 1 0.78	4314 rgBT 2.4	Overlock
70	Effect of the isobaric and isothermal reductions in excess and configurational entropies on glass-forming dynamics. Philosophical Magazine, 2004, 84, 1513-1519.	0.7	3
71	Volume and temperature as control parameters for the dielectric \hat{l}_{\pm} relaxation of polymers and molecular glass formers. Philosophical Magazine, 2004, 84, 1573-1581.	0.7	58
72	Excess wing in the dielectric loss spectra of propylene glycol oligomers at elevated pressure. Physical Review B, 2004, 69, .	1.1	77

5

#	Article	IF	CITATIONS
73	Temperature and volume effects on the change of dynamics in propylene carbonate. Physical Review E, 2004, 70, 061501.	0.8	80
74	Thermodynamical scaling of the glass transition dynamics. Physical Review E, 2004, 69, 062501.	0.8	289
75	Isochronal temperature–pressure superpositioning of the α-relaxation in type-A glass formers. Chemical Physics Letters, 2003, 367, 259-264.	1.2	98
76	Temperature and Volume Effects on Local Segmental Relaxation in Poly(vinyl acetate). Macromolecules, 2003, 36, 1361-1367.	2.2	100
77	Influence of molecular structure on the dynamics of supercooled van der Waals liquids. Physical Review E, 2003, 67, 031505.	0.8	36
78	Dielectric α-relaxation and ionic conductivity in propylene glycol and its oligomers measured at elevated pressure. Journal of Chemical Physics, 2003, 119, 11951-11956.	1.2	61
79	Dynamics of Salol at Elevated Pressure. Journal of Physical Chemistry A, 2003, 107, 2369-2373.	1.1	66
80	The relative contributions of temperature and volume to structural relaxation of van der Waals molecular liquids. Journal of Chemical Physics, 2003, 118, 4578-4582.	1.2	74
81	Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight. Journal of Chemical Physics, 2003, 119, 1838-1842.	1.2	101
82	Pressure Evolution of the Excess Wing in a Type-BGlass Former. Physical Review Letters, 2003, 91, 015702.	2.9	107
83	Dynamic crossover in supercooled liquids induced by high pressure. Journal of Chemical Physics, 2003, 118, 5701-5703.	1.2	86
84	Dynamic properties of polyvinylmethylether near the glass transition. Journal of Chemical Physics, 2003, 119, 4052-4059.	1.2	72
85	Effect of pressure on the α relaxation in glycerol and xylitol. Journal of Chemical Physics, 2002, 116, 9839-9844.	1.2	98
86	Volume effects on the molecular mobility close to glass transition in supercooled phenylphthalein-dimethylether. II. Journal of Chemical Physics, 2002, 117, 7624-7630.	1.2	47
87	Investigation of the correlation between structural relaxation time and configurational entropy under high pressure in a chlorinated biphenyl. Journal of Chemical Physics, 2002, 117, 4901-4906.	1.2	49
88	Dynamics of aroclor and its modification by dissolved polystyrene. Journal of Chemical Physics, 2002, 117, 4585-4590.	1.2	14
89	Relative contributions of thermal energy and free volume to the temperature dependence of structural relaxation in fragile glass-forming liquids. Physical Review B, 2002, 66, .	1.1	114
90	Electromechanical properties of poly(vinylidene fluoride-trifluoroethylene) networks. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1975-1984.	2.4	23

#	Article	IF	CITATIONS
91	Correlation between the a relaxation and the excess wing for polychlorinated biphenyls and glycerol. Magyar Apróvad Közlemények, 2002, 69, 947-952.	1.4	6
92	?- and ?-Relaxations in neat and antiplasticized polybutadiene. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1841-1847.	2.4	48
93	Influence of the wettability on the electrical response of microporous systems. Journal Physics D: Applied Physics, 2000, 33, 1036-1047.	1.3	25
94	Dielectric parameters to monitor the crosslink of epoxy resins. Journal of Applied Polymer Science, 1997, 65, 17-25.	1.3	43