Eugenio Parente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5132005/publications.pdf

Version: 2024-02-01

76326 118850 4,656 108 40 62 citations h-index g-index papers 110 110 110 4239 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology, 1999, 52, 628-638.	3.6	224
2	Metagenomics insights into food fermentations. Microbial Biotechnology, 2017, 10, 91-102.	4.2	196
3	Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. Journal of Applied Microbiology, 2001, 90, 882-891.	3.1	123
4	Aerobic metabolism in the genus <i>Lactobacillus</i> : impact on stress response and potential applications in the food industry. Journal of Applied Microbiology, 2017, 122, 857-869.	3.1	121
5	Influence of pH on the production of enterocin 1146 during batch fermentation. Letters in Applied Microbiology, 1994, 19, 12-15.	2.2	119
6	A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. Journal of Applied Bacteriology, 1992, 73, 290-298.	1.1	118
7	Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages. Journal of Applied Microbiology, 2004, 97, 271-284.	3.1	117
8	Recent Past, Present, and Future of the Food Microbiome. Annual Review of Food Science and Technology, 2018, 9, 589-608.	9.9	113
9	A comparison of methods for the measurement of bacteriocin activity. Journal of Microbiological Methods, 1995, 22, 95-108.	1.6	110
10	Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. International Journal of Food Microbiology, 2010, 144, 270-279.	4.7	105
11	Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. International Journal of Food Microbiology, 2007, 114, 69-82.	4.7	103
12	Influence of pH on growth and bacteriocin production byLactococcus lactis subsp.lactis 14ONWC during batch fermentation. Applied Microbiology and Biotechnology, 1994, 41, 388-394.	3.6	101
13	Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy). Journal of Applied Microbiology, 2001, 90, 943-952.	3.1	87
14	Starter Cultures: General Aspects. Cheese: Chemistry, Physics and Microbiology, 2004, 1, 123-147.	0.2	84
15	Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. International Journal of Food Microbiology, 2012, 155, 51-59.	4.7	80
16	Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science and Technology, 2015, 60, 721-728.	5.2	73
17	Characterization of Enterocin 1146, a Bacteriocin from Enterococcus faecium Inhibitory to Listeria monocytogenes. Journal of Food Protection, 1992, 55, 497-502.	1.7	72
18	Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Science, 2008, 80, 1238-1248.	5. 5	68

#	Article	IF	CITATIONS
19	The combined effect of nisin, leucocin F10, pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. International Journal of Food Microbiology, 1998, 40, 65-75.	4.7	66
20	Exopolysaccharide production by Streptococcus thermophilus SY: production and preliminary characterization of the polymer. Journal of Applied Microbiology, 2002, 92, 297-306.	3.1	65
21	Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group. PLoS ONE, 2014, 9, e99189.	2.5	65
22	FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis. International Journal of Food Microbiology, 2016, 219, 28-37.	4.7	65
23	Molecular characterization of lactic acid bacteria from sourdough breads produced in Sardinia (Italy) and multivariate statistical analyses of results. Systematic and Applied Microbiology, 2006, 29, 138-144.	2.8	64
24	Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. International Journal of Food Microbiology, 2007, 115, 165-172.	4.7	63
25	Diversity of stress responses in dairy thermophilic streptococci. International Journal of Food Microbiology, 2008, 124, 34-42.	4.7	62
26	Functional properties of Lactobacillus plantarum strains: A multivariate screening study. LWT - Food Science and Technology, 2014, 56, 69-76.	5.2	62
27	Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy). International Journal of Food Microbiology, 2005, 98, 63-72.	4.7	61
28	Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. Journal of Industrial Microbiology and Biotechnology, 1997, 18, 62-67.	3.0	59
29	The microbiota of dairy milk: A review. International Dairy Journal, 2020, 107, 104714.	3.0	58
30	Variation of microbial load and visual quality of ready-to-eat salads by vegetable type, season, processor and retailer. Food Microbiology, 2010, 27, 1071-1077.	4.2	57
31	Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019, 293, 102-113.	4.7	55
32	Acid production, proteolysis, autolytic and inhibitory properties of lactic acid bacteria isolated from pasta filata cheeses: A multivariate screening study. International Dairy Journal, 2008, 18, 81-92.	3.0	53
33	The microbiota of high-moisture mozzarella cheese produced with different acidification methods. International Journal of Food Microbiology, 2016, 216, 9-17.	4.7	49
34	Characterization of lactic acid bacteria isolated from sourdoughs for Cornetto, a traditional bread produced in Basilicata (Southern Italy). World Journal of Microbiology and Biotechnology, 2008, 24, 1785-1795.	3.6	48
35	Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. Journal of Food Engineering, 2004, 64, 179-186.	5.2	47
36	Proteolysis in Model Sourdough Fermentations. Journal of Agricultural and Food Chemistry, 2006, 54, 2567-2574.	5.2	45

3

#	Article	IF	Citations
37	A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2012, 28, 919-927.	3.6	43
38	Inhibition of Listeria in Buffer, Broth, and Milk by Enterocin 1146, a Bacteriocin Produced by Enterococcus faecium. Journal of Food Protection, 1992, 55, 503-508.	1.7	42
39	Characterization of natural starter cultures used in the manufacture of Pasta Filata Cheese in Basilicata (Southern Italy). International Dairy Journal, 1997, 7, 775-783.	3.0	42
40	Aerobic metabolism and oxidative stress tolerance in the Lactobacillus plantarum group. World Journal of Microbiology and Biotechnology, 2013, 29, 1713-1722.	3.6	42
41	Optimization of fumaric acid production from potato flour by Rhizopus arrhizus. Applied Microbiology and Biotechnology, 1991, 36, 35-39.	3.6	41
42	Temperature and respiration affect the growth and stress resistance of <i>Lactobacillus plantarum </i> C17. Journal of Applied Microbiology, 2013, 115, 848-858.	3.1	40
43	Use of mass spectrometry to characterize proteolysis in cheese. Food Chemistry, 2007, 101, 964-972.	8.2	39
44	Discrimination of commercial Caciocavallo cheeses on the basis of the diversity of lactic microflora and primary proteolysis. International Dairy Journal, 2005, 15, 1138-1149.	3.0	38
45	Effect of inactivation of ccpA and aerobic growth in Lactobacillus plantarum: A proteomic perspective. Journal of Proteomics, 2012, 75, 4050-4061.	2.4	38
46	Urease production by Streptococcus thermophilus. Food Microbiology, 2008, 25, 113-119.	4.2	36
47	Leucocin F10, a bacteriocin from Leuconostoc carnosum. International Journal of Food Microbiology, 1996, 33, 231-243.	4.7	35
48	Processing of Chromatographic Data for Chemometric Analysis of Peptide Profiles from Cheese Extracts: A Novel Approach. Journal of Agricultural and Food Chemistry, 2004, 52, 6904-6911.	5.2	35
49	Starter Cultures: General Aspects. , 2017, , 201-226.		35
50	A comparison of bioinformatic approaches for 16S rRNA gene profiling of food bacterial microbiota. International Journal of Food Microbiology, 2018, 265, 9-17.	4.7	35
51	Genotypic and phenotypic diversity ofLactobacillus rossiaestrains isolated from sourdough. Journal of Applied Microbiology, 2007, 103, 821-835.	3.1	34
52	Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. International Dairy Journal, 2016, 63, 78-87.	3.0	34
53	Microbial community dynamics in thermophilic undefined milk starter cultures. International Journal of Food Microbiology, 2016, 217, 59-67.	4.7	34
54	Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87. PLoS ONE, 2016, 11, e0164065.	2.5	33

#	Article	IF	CITATIONS
55	Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food Microbiology, 2018, 76, 117-127.	4.2	33
56	Growth of Thermophilic Starters in Whey Permeate Media. Journal of Dairy Science, 1991, 74, 20-28.	3.4	32
57	Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. International Journal of Food Microbiology, 2009, 129, 211-220.	4.7	32
58	Advancing integration of data on food microbiome studies: FoodMicrobionet 3.1, a major upgrade of the FoodMicrobionet database. International Journal of Food Microbiology, 2019, 305, 108249.	4.7	32
59	Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus caseiÂstrains. LWT - Food Science and Technology, 2015, 60, 817-824.	5. 2	30
60	Viability staining and detection of metabolic activity of sourdough lactic acid bacteria under stress conditions. World Journal of Microbiology and Biotechnology, 2009, 25, 1119-1124.	3.6	29
61	Production and characterisation of alginate fromAzotobacter vinelandii. Journal of the Science of Food and Agriculture, 1999, 79, 602-610.	3.5	28
62	Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. International Journal of Food Microbiology, 2012, 157, 278-285.	4.7	28
63	Fumaric acid production from hydrolysates of starch-based substrates. Journal of Chemical Technology and Biotechnology, 2007, 54, 283-290.	3.2	27
64	Use of dairy and non-dairy Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus strains as adjuncts in cheddar cheese. Dairy Science and Technology, 2013, 93, 623-640.	2.2	27
65	Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT - Food Science and Technology, 2015, 63, 322-330.	5. 2	27
66	A survey of non-starter lactic acid bacteria in traditional cheeses: Culture dependent identification and survival to simulated gastrointestinal transit. International Dairy Journal, 2015, 43, 42-50.	3.0	26
67	Adherence to the traditional Mediterranean diet in a population of South of Italy: factors involved and proposal of an educational field-based survey tool. International Journal of Food Sciences and Nutrition, 2019, 70, 195-201.	2.8	26
68	Design and Evaluation of Specific PCR Primers for Rapid and Reliable Identification of Staphylococcus xylosus Strains Isolated from Dry Fermented Sausages. Systematic and Applied Microbiology, 2003, 26, 601-610.	2.8	24
69	Comparison of Statistical Methods for Identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from Randomly Amplified Polymorphic DNA Patterns. Applied and Environmental Microbiology, 2001, 67, 2156-2166.	3.1	22
70	Kinetics of continuous whey fermentation by <i>Kluyveromyces fragilis</i> . Journal of Chemical Technology and Biotechnology, 1990, 49, 205-222.	3.2	22
71	Structure of association networks in food bacterial communities. Food Microbiology, 2018, 73, 49-60.	4.2	22
72	Metataxonomic and metagenomic approaches for the study of undefined strain starters for cheese manufacture. Critical Reviews in Food Science and Nutrition, 2022, 62, 3898-3912.	10.3	22

#	Article	IF	CITATIONS
73	Title is missing!. Biotechnology Letters, 1997, 11, 271-275.	0.5	21
74	Modelling the growth of <i>Weissella cibaria </i> as a function of fermentation conditions. Journal of Applied Microbiology, 2009, 107, 1528-1535.	3.1	21
75	Antimicrobial activity of Myrtus communis L. water-ethanol extract against meat spoilage strains of Brochothrix thermosphacta and Pseudomonas fragi in vitro and in meat. Annals of Microbiology, 2015, 65, 841-850.	2.6	21
76	Factors affecting gene expression and activity of heme- and manganese-dependent catalases in Lactobacillus casei strains. International Journal of Food Microbiology, 2018, 280, 66-77.	4.7	21
77	Alginate production by Azotobacter vinelandii DSM576 in batch fermentation. Journal of Industrial Microbiology and Biotechnology, 1998, 20, 171-176.	3.0	20
78	New procedure for the determination of nisin in milk. Biotechnology Letters, 1998, 12, 783-786.	0.5	18
79	Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. Journal of Microbiological Methods, 2006, 66, 336-346.	1.6	18
80	Effect of dissolved oxygen concentration on repeated production of gluconic acid by immobilised mycelia of Aspergillus niger. Applied Microbiology and Biotechnology, 1991, 36, 320.	3.6	17
81	Modified chemically defined medium for enhanced respiratory growth of <i>Lactobacillus casei </i> li>and <i>Lactobacillus plantarum </i> groups. Journal of Applied Microbiology, 2015, 119, 776-785.	3.1	17
82	Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of Lactobacillus casei N87 Cultivated in Cheese Whey Permeate Medium. Frontiers in Microbiology, 2019, 10, 851.	3.5	17
83	Effect of adjuncts on microbiological and chemical properties of Scamorza cheese. Journal of Dairy Science, 2015, 98, 1467-1478.	3.4	16
84	Selection of mutants tolerant of oxidative stress from respiratory cultures of <i>Lactobacillus plantarum </i> C17. Journal of Applied Microbiology, 2014, 116, 632-643.	3.1	15
85	RP-HPLC peptide profiling of cheese extracts: A study of sources of variation, repeatability and reproducibility. Food Chemistry, 2012, 131, 1552-1560.	8.2	14
86	Rapid detection assay for oxygen consumption in the Lactobacillus casei group. Annals of Microbiology, 2014, 64, 1861-1864.	2.6	14
87	A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnology Letters, 2002, 24, 1477-1482.	2.2	13
88	Evaluation of a differential medium for the preliminary identification of members of the Lactobacillus plantarum and Lactobacillus casei groups. Annals of Microbiology, 2015, 65, 1649-1658.	2.6	13
89	Evolution of microbial counts and chemical and physico-chemical parameters in high-moisture Mozzarella cheese during refrigerated storage. LWT - Food Science and Technology, 2015, 63, 821-827.	5.2	13
90	Draft Genome Sequence of the Respiration-Competent Strain Lactobacillus casei N87. Genome Announcements, 2016, 4, .	0.8	13

#	Article	IF	Citations
91	Microbial changes of natural milk cultures for mozzarella cheese during repeated propagation cycles. LWT - Food Science and Technology, 2016, 65, 572-579.	5.2	12
92	A review of methods for the inference and experimental confirmation of microbial association networks in cheese. International Journal of Food Microbiology, 2022, 368, 109618.	4.7	12
93	Effect of ammonium sulphate concentration and agitation speed on the kinetics of alginate production by Azotobacter vinelandii DSM576 in batch fermentation. Journal of Industrial Microbiology and Biotechnology, 2000, 25, 242-248.	3.0	11
94	Polymorphism of the phosphoserine phosphatase gene in Streptococcus thermophilus and its potential use for typing and monitoring of population diversity. International Journal of Food Microbiology, 2016, 236, 138-147.	4.7	10
95	Overall volumetric oxygen transfer coefficient in an aerated bench-top stirred fermenter in aqueous dispersions of sodium alginate. Biotechnology and Applied Biochemistry, 2004, 40, 133.	3.1	9
96	Metabolic profiling and stress response of anaerobic and respiratory cultures of Lactobacillus plantarum C17 grown in a chemically defined medium. Annals of Microbiology, 2015, 65, 1639-1648.	2.6	9
97	Tween 80 and respiratory growth affect metabolite production and membrane fatty acids inLactobacillus caseiN87. Journal of Applied Microbiology, 2017, 122, 759-769.	3.1	9
98	A statistical procedure for the analysis of microbial communities based on phenotypic properties of isolates. Journal of Microbiological Methods, 2002, 49, 121-134.	1.6	8
99	Analysis of rpoB polymorphism and PCR-based approaches for the identification of Leuconostoc mesenteroides at the species and subspecies level. International Journal of Food Microbiology, 2020, 318, 108474.	4.7	8
100	Selection of Lactiplantibacillus Strains for the Production of Fermented Table Olives. Microorganisms, 2022, 10, 625.	3.6	8
101	FoodMicrobionet v4: A large, integrated, open and transparent database for food bacterial communities. International Journal of Food Microbiology, 2022, 372, 109696.	4.7	7
102	Title is missing!. Biotechnology Letters, 1998, 12, 649-652.	0.5	6
103	Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response. Annals of Microbiology, 2015, 65, 297-305.	2.6	5
104	The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods, 2022, 11, 535.	4.3	4
105	A study on relationships between durum wheat semolina properties, technological mixing parameters and the properties of dough after mixing. International Journal of Food Science and Technology, 2013, 48, 2541-2550.	2.7	3
106	SDS–PAGE patterns of whole cell proteins of Streptococcus thermophilus: impact of strain, growth phase and adaptation and relationship with stress response. World Journal of Microbiology and Biotechnology, 2011, 27, 2529-2537.	3.6	0
107	Chemometric Approaches for Identity and Authenticity Testing, Quality Assurance and Process Control. , 2022, , 327-347.		0
108	Growth Fitness, Heme Uptake and Genomic Variants in Mutants of Oxygen-tolerant Lacticaseibacillus casei and Lactiplantibacillus plantarum Strains. Microbiological Research, 2022, , 127096.	5. 3	0