
Lyes Bennamoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moisture evolution, thermal properties and energy consumption of drying spent grain pellets from a blend of some cereals for small-scale bio-energy utilization: modelling and experimental study. Biomass Conversion and Biorefinery, 2024, 14, 8805-8817.	2.9	3
2	Energy and exergy analysis of solar dryer with triple air passage direction collector powered by a wind generator. International Journal of Energy and Environmental Engineering, 2023, 14, 63-77.	1.3	11
3	Modeling and simulation of drying kinetics/curves: application to building materials. Journal of Building Pathology and Rehabilitation, 2022, 7, 1.	0.7	3
4	Optimization of the energy consumption, drying kinetics and evolution of thermo-physical properties of drying of forage grass for haymaking. Heat and Mass Transfer, 2022, 58, 1187-1206.	1.2	7
5	Bioresource Technology for Bioenergy: Development and Trends. Energies, 2022, 15, 1717.	1.6	1
6	Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Solar Energy, 2022, 240, 176-192.	2.9	13
7	Numerical Study of the Pyrolysis of Wood Chips for Biocharcoal Production: Influence of Chips Geometry and Initial Moisture Content. Energies, 2022, 15, 4098.	1.6	0
8	Analysis of the Heat Transfer Coefficient, Thermal Effusivity and Mathematical Modelling of Drying Kinetics of a Partitioned Single Pass Low-Cost Solar Drying of Cocoyam Chips with Economic Assessments. Energies, 2022, 15, 4457.	1.6	11
9	Comparative experimental evaluation and thermodynamic analysis of the possibility of using degraded C15-C50 crankcase oil waste as thermal storage materials in solar drying systems. Solar Energy, 2022, 240, 408-421.	2.9	7
10	Nigeria's Energy deficit: The challenges and Eco- friendly approach in reducing the energy gap. International Journal of Sustainable Engineering, 2021, 14, 442-459.	1.9	7
11	Solar drying research of medicinal and aromatic plants: An African experience with assessment of the economic and environmental impact African Journal of Science, Technology, Innovation and Development, 2021, 13, 247-260.	0.8	19
12	Modeling, numerical simulation and validation of the hygrothermal transfer through a wooden building wall in Nancy, France. Thermal Science and Engineering Progress, 2021, 22, 100808.	1.3	6
13	Reviewing the Exergy Analysis of Solar Thermal Systems Integrated with Phase Change Materials. Energies, 2021, 14, 724.	1.6	18
14	Effect of Ultrasound on Henna Leaves Drying and Extraction of Lawsone: Experimental and Modeling Study. Energies, 2021, 14, 1329.	1.6	4
15	Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection. AgriEngineering, 2021, 3, 138-157.	1.7	15
16	Influence of drying applications on wood, brick and concrete used as building materials: a review. Journal of Building Pathology and Rehabilitation, 2021, 6, 1.	0.7	9
17	Modeling, numerical simulation and validation of a convective dryer in steady conditions: case study of tropical woods. International Journal of Modelling and Simulation, 2020, 40, 143-161.	2.3	8
18	Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renewable Energy, 2020, 151, 659-673.	4.3	57

Lyes Bennamoun

#	Article	IF	CITATIONS
19	Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties. Energies, 2020, 13, 2544.	1.6	7
20	Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger. Heliyon, 2020, 6, e03401.	1.4	83
21	In-Situ Evolution of Heat and Mass Transfer Phenomena and Evaporative Water Losses of Three Agro-Waste Evaporative Cooling Pads: An Experimental and Modeling Study. Waste and Biomass Valorization, 2019, 10, 3185-3195.	1.8	7
22	Determination and modeling of the isotherms of adsorption/desorption and thermodynamic properties of obeche and lotofa using nelson's sorption model. Heat and Mass Transfer, 2019, 55, 2185-2197.	1.2	17
23	Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer. Drying Technology, 2019, 37, 1863-1878.	1.7	26
24	Using Diffusion Model for Prediction and Optimization of Drying Process of Building Material. Advances in Civil and Industrial Engineering Book Series, 2019, , 1-23.	0.2	1
25	Potential of integrating Na ₂ SO ₄ · 10H ₂ O pellets in solar drying system. Drying Technology, 2018, 36, 1017-1030.	1.7	39
26	Effect of Storage Conditions on Moisture Sorption of Mixed Biomass Pellets. Arabian Journal for Science and Engineering, 2018, 43, 1195-1203.	1.7	11
27	Drying Process of Food: Fundamental Aspects and Mathematical Modeling. , 2018, , 29-82.		5
28	Experience of Solar Drying in Africa: Presentation of Designs, Operations, and Models. Food Engineering Reviews, 2018, 10, 211-244.	3.1	38
29	Evolution of thermo-physical properties of Akuama (picralima nitida) seed and antioxidants retention capacity during hot air drying. Heat and Mass Transfer, 2018, 54, 3533-3546.	1.2	11
30	Numerical study of timber solar drying with application to different geographical and climatic conditions in Central Africa. Solar Energy, 2018, 170, 454-469.	2.9	36
31	Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology, 2017, 233, 353-362.	4.8	79
32	Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy, 2017, 113, 1182-1192.	4.3	99
33	Numerical models performance to predict drying liquid water in porous building materials: Comparison of experimental and simulated drying water content profiles. Cogent Engineering, 2017, 4, 1365572.	1.1	7
34	Superheated steam drying: Design aspects, energetic performances, and mathematical modeling. Renewable and Sustainable Energy Reviews, 2016, 60, 1562-1583.	8.2	39
35	Microwave drying of wastewater sludge: Experimental and modeling study. Drying Technology, 2016, 34, 235-243.	1.7	38
36	Forced Convective Drying of Wastewater Sludge with the Presentation of Exergy Analysis of the Dryer. Chemical Engineering Communications, 2016, 203, 855-860.	1.5	8

Lyes Bennamoun

#	Article	IF	CITATIONS
37	Moisture Diffusivity during Microwave Drying of Wastewater Sewage Sludge. Transactions of the ASABE, 2015, , 501-508.	1.1	4
38	Investigation on Convective Drying of Mixtures of Sewage Sludge and Sawdust in a Fixed Bed. Drying Technology, 2015, 33, 704-712.	1.7	21
39	Convective drying of a single cherry tomato: Modeling and experimental study. Food and Bioproducts Processing, 2015, 94, 114-123.	1.8	31
40	Drying of alga as a source of bioenergy feedstock and food supplement – A review. Renewable and Sustainable Energy Reviews, 2015, 50, 1203-1212.	8.2	29
41	Determination of the Moisture-Sorption Isotherms and Isosteric Heat of Henna Leaves. Journal of Engineering Physics and Thermophysics, 2015, 88, 52-62.	0.2	16
42	Modeling and Simulation of Heat and Mass Transfer During Convective Drying of Wastewater Sludge with Introduction of Shrinkage Phenomena. Drying Technology, 2014, 32, 13-22.	1.7	38
43	Analysis of the Shrinkage Effect on Mass Transfer During Convective Drying of Sawdust/Sludge Mixtures. Drying Technology, 2014, 32, 1706-1717.	1.7	33
44	Convective Drying of Wastewater Sludge: Introduction of Shrinkage Effect in Mathematical Modeling. Drying Technology, 2013, 31, 643-654.	1.7	46
45	Improving Solar Dryers' Performances Using Design and Thermal Heat Storage. Food Engineering Reviews, 2013, 5, 230-248.	3.1	19
46	Review on fundamental aspect of application of drying process to wastewater sludge. Renewable and Sustainable Energy Reviews, 2013, 28, 29-43.	8.2	183
47	Baker's Yeast Behavior during Vacuum Agitated Contact Drying. Chemical Engineering and Technology, 2013, 36, 1795-1800.	0.9	0
48	Integration of Photovoltaic Cells in Solar Drying Systems. Drying Technology, 2013, 31, 1284-1296.	1.7	19
49	Experimental Study and Modeling of Sorption Isotherms of Kabar Sid EL Cheikh Capparis Spinosa L. from Bechar (South West Algeria). Energy Procedia, 2012, 18, 359-367.	1.8	5
50	Solar drying of wastewater sludge: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 1061-1073.	8.2	111
51	An Overview on Application of Exergy and Energy for Determination of Solar Drying Efficiency. International Journal of Energy and Engineering, 2012, 2, 184-194.	2.0	33
52	Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers. Renewable and Sustainable Energy Reviews, 2011, 15, 3371-3379.	8.2	34
53	Mathematical description of heat and mass transfer during deep bed drying: Effect of product shrinkage on bed porosity. Applied Thermal Engineering, 2008, 28, 2236-2244.	3.0	37
54	Numerical simulation of drying under variable external conditions: Application to solar drying of seedless grapes. Journal of Food Engineering, 2006, 76, 179-187.	2.7	66

1

#	Article	IF	CITATIONS
55	Design and simulation of a solar dryer for agriculture products. Journal of Food Engineering, 2003, 59, 259-266.	2.7	106

56 Effect of ultrasound on drying kinetics of El Henna leaves (Lawsonia inermis). , 0, , .